1 Organelle Inheritance in Yeast and Other Fungi

While the study of organelle inheritance has long been a topic of active investigation, there are still many outstanding questions. Do the mechanisms found in S. cerevisiae for initiation and termination of organelle movement from mother cells to buds, as

  • PDF / 713,474 Bytes
  • 23 Pages / 504.567 x 720 pts Page_size
  • 28 Downloads / 150 Views

DOWNLOAD

REPORT


Organelle Inheritance in Yeast and Other Fungi

PALLAVI SRIVASTAVA1, DANA M. ALESSI WOLKEN2, LUIS J. GARCI´A-RODRI´GUEZ3, RYO HIGUCHI-SANABRIA1, LIZA A. PON1

CONTENTS I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. Cytoskeletal Organization and Function in Organelle Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . 4 A. Organization of the Actin Cytoskeleton in Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 B. Organization of the Microtubule Cytoskeleton in Fungi . . . . . . . . . . . . . . . . . . . . . . . 6 III. Organelle-Specific Inheritance in Fungi . . . . . . . 7 A. Nuclear Inheritance in S. cerevisiae . . . . . . . . . 8 B. Endoplasmic Reticulum . . . . . . . . . . . . . . . . . . . . . 9 C. Mitochondria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1. Microtubule-Dependent Mitochondrial Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. Actin-Dependent Mitochondrial Movement and Quality Control During Inheritance in S. cerevisiae . . . . . . . . . . . . . . . 12 3. Anchorage of Mitochondria in Mother Cells and Buds in S. cerevisiae . . . . . . . . . . . 13 4. Checkpoints That Inhibit Cell Cycle Progression in Response to Defects in Mitochondrial Inheritance . . . . . . . . . . . . . . . 14 D. Vacuoles, the Lysosomes of Yeast . . . . . . . . . . 15 E. The Golgi Apparatus . . . . . . . . . . . . . . . . . . . . . . . 16 F. Peroxisomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1. Peroxisome Biogenesis . . . . . . . . . . . . . . . . . . . 17 2. Peroxisome Inheritance . . . . . . . . . . . . . . . . . . 18 IV. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; e-mail: [email protected] 2 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA 3 Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK

I. Introduction The compartmentalization of cytoplasm into membrane-bound organelles creates order within a cell, prevents undesirable interactions between cellular activities, and enables specialized functions. While each organelle has a defined cellular role, its localization, copy number, size, and morphology can vary. For instance, variations in the carbon source for growth of budding yeast affects peroxisomal biosynthesis and can result in a tenfold change in the abundance of mitochondria (Einerhand et al. 1992). Nuclear inheritance, which uses the mitotic spindle to segregate nuclei and chromosomes, occurs by a conserved and tightly regulated mechanism. The inheritance of other organelles occurs by more diverse and less-understood mechanisms. Organelles like mitochondria and chloroplasts cannot be produced de novo. This is t