1120 Detection of mechanical ventricular asynchrony by cine-MRI

  • PDF / 65,736 Bytes
  • 1 Pages / 610 x 792 pts Page_size
  • 17 Downloads / 197 Views

DOWNLOAD

REPORT


BioMed Central

Open Access

Meeting abstract

1120 Detection of mechanical ventricular asynchrony by cine-MRI Kai Muellerleile*1, A Stork2, A Barmeyer1, R Koester1, G Adam1, T Meinertz1 and G Lund2 Address: 1University Medical Center Hamburg-Eppendorf, Hamburg, Germany and 2Roentgeninstitut Duesseldorf, Duesseldorf, Germany * Corresponding author

from 11th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 1–3 February 2008 Published: 22 October 2008 Journal of Cardiovascular Magnetic Resonance 2008, 10(Suppl 1):A245

doi:10.1186/1532-429X-10-S1-A245

Abstracts of the 11th Annual SCMR Scientific Sessions - 2008

Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1532-429X-10-S1-info.pdf

This abstract is available from: http://jcmr-online.com/content/10/S1/A245 © 2008 Muellerleile et al; licensee BioMed Central Ltd.

Introduction Quantification of mechanical ventricular asynchrony is important for the prediction of outcome after cardiac resynchronization therapy (CRT). Purpose of the present study was to assess the ability of high temporal resolution cine-MRI (HTRC-MRI) to quantify mechanical ventricular asynchrony in patients with left bundle branch block (LBBB).

Methods 32 patients with (n = 17) and without (n = 15) LBBB in surface ECG underwent HTRC-MRI at 1.5 Tesla. For a temporal resolution of 6.3 ms, a shared-phases trueFISP sequence and parallel imaging was used. Time to peak contraction (TPC) was defined as the interval between Rwave and the peak of systolic contraction. Inter- and intraventricular delays in HTRC-MRI were calculated as the difference of TPC of lateral LV- to lateral RV-wall and lateral to septal LV-wall, respectively. 1) Analysis of inter- and intraobserver agreement for the assessment of HTRC-MRI delays was performed. 2) HTRC-MRI delays were compared between patients with and without LBBB. 3) HTRCMRI delays were correlated with standard echocardiographic parameters in patients with LBBB.

ventricular delays. 2) The interventricular delay was 110 ± 50 ms in patients with and -1 ± 18 ms in patients without LBBB (P < 0.0001). The intraventricular delay was 336 ± 86 ms in patients and 40 ± 49 ms in patients without LBBB (P < 0.0001). 3) There was a good correlation and agreement of the interventricular delay between HTRCMRI and echocardiography (r = 0.78, P = 0.0002; mean difference: 39 ± 36 ms). There was a moderate correlation and large difference of the intraventricular delay between HTRC-MRI and echocardiography (r = 0.66, P = 0.0042; mean difference: 257 ± 64 ms).

Conclusion HTRC-MRI can detect and quantify inter- and intraventricular mechanical asynchrony. We present a new and simple approach to quantify mechanical asynchrony without the need for data post-processing. The comparison between HTRC-MRI and echocardiography requires further assessment and extensive comparison with other imaging methods. HTRC-MRI may become a valuable tool for the prediction of responders to CRT in a comprehen