14 Mating-Type Structure, Function, Regulation and Evolution in the Pezizomycotina

Significant progress has been made since the previous edition of The Mycota published in 2006. The most conspicuous advances have concerned firstly our understanding of the evolution of mating-type regions in the fungal kingdom and secondly the identifica

  • PDF / 847,349 Bytes
  • 35 Pages / 504.567 x 720 pts Page_size
  • 36 Downloads / 203 Views

DOWNLOAD

REPORT


Mating-Type Structure, Function, Regulation and Evolution in the Pezizomycotina

P.S. DYER1, P. INDERBITZIN2, R. DEBUCHY3

CONTENTS I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. Mating-Type Structure and Evolution . . . . . . . A. Mating-Type Genes and Evolution . . . . . . . . 1. Core HMG-Box Genes . . . . . . . . . . . . . . . . . . 2. Acquired Genes . . . . . . . . . . . . . . . . . . . . . . . . . B. Reproductive Lifestyles and Evolution . . . . 1. Pseudo-homothallic Lifestyle . . . . . . . . . . . 2. Homothallic Lifestyle . . . . . . . . . . . . . . . . . . . 3. Switching Lifestyle . . . . . . . . . . . . . . . . . . . . . . 4. Asexual Lifestyle and Cryptic Sexuality . . . III. Mating-Type Circuits (Functions and Regulation) and Evolution . . . . . . . . . . . . . . . . . . . A. Regulation of Mating-Type Genes . . . . . . . . . 1. Budding Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Fission Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Pezizomycotina . . . . . . . . . . . . . . . . . . . . . . . . . 4. Evolution of Regulatory Circuits in Opisthokonta . . . . . . . . . . . . . . . . . . . . . . . . B. Regulation and Diversity of Mating-Type Target Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

351 353 353 353 355 357 357 360 363 366 371 371 371 371 371 372 372 375 376

I. Introduction The ability to undergo sexual reproduction, involving the fusion of haploid gametes to form a diploid zygote followed by meiosis, is a key feature of many fungal species as with eukaryotes in general. Indeed, fungi have evolved 1 School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; e-mail: [email protected] 2 Department of Plant Pathology, University of California, Davis, CA, 95616, USA; e-mail: [email protected] 3 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Universite´ Paris-Saclay, 91198 Gifsur-Yvette cedex, France; e-mail: [email protected]

unusually diverse and fascinating methods to achieve such sexual union (Dyer 2008). In the case of the Pezizomycotina (also termed euascomycete fungi or filamentous ascomycetes), species can exhibit heterothallic (selfincompatible) or homothallic (self-compatible) lifestyles, and some species are even able to switch from one reproductive lifestyle to another. Thus, by definition, individuals of homothallic species can complete the sexual cycle without the need for a mating partner, whereas individuals of heterothallic species are obligately outcrossing and require a compatible partner for sexual reproduction to occur. In some circumstances, one of the two compatible partners of a heterothallic species can engage in sexual reproduction on its own, revealing a potential for a unisexual lifestyle. However, unlike higher eukaryotes which show clear