5-Class towers of cyclic quartic fields arising from quintic reflection
- PDF / 736,054 Bytes
- 30 Pages / 439.37 x 666.142 pts Page_size
- 5 Downloads / 134 Views
5-Class towers of cyclic quartic fields arising from quintic reflection Abdelmalek Azizi1 · Yasuhiro Kishi2 · Daniel C. Mayer3 Mohammed Talbi4
· Mohamed Talbi4 ·
Received: 29 June 2019 / Accepted: 23 September 2019 © Fondation Carl-Herz and Springer Nature Switzerland AG 2019
Abstract Let ζ5 be a primitive fifth root of unity and d = 1 be a quadratic fundamental discriminant √ not divisible by 5. For the 5-dual cyclic quartic field M = Q((ζ5 − ζ5−1 ) d) of the quadratic √ √ fields k1 = Q( d) and k2 = Q( 5d) in the sense of the quintic reflection theorem, the (2) (2) possibilities for the isomophism type of the Galois group G5 M = Gal(M5 /M) of the (2) second Hilbert 5-class field M5 of M are investigated, when the 5-class group Cl5 (M) is (∞) elementary bicyclic of rank two. Usually, the maximal unramified pro-5-extension M5 of M (2) coincides with M5 already. The precise length 5 M of the 5-class tower of M is determined, (2) when G5 M is of order less than or equal to 55 . Theoretical results are underpinned by the actual computation of all 83, respectively 93, cases in the range 0 < d < 104 , respectively −2 · 105 < d < 0. Keywords 5-Class field tower · 5-Principalization · Quadratic fields · 5-Dual cyclic quartic fields · Frobenius fields; finite 5-groups · Schur σ -groups Résumé Soient ζ5 une racine primitive 5-ième de l’unité et d = 1 un discriminant fondamental √ quadratique non divisible par 5. Pour le corps quartique cyclique M = Q((ζ5 −ζ5−1 ) d), le 5√ √ dual des corps quadratiques k1 = Q( d) et k2 = Q( 5d) au sens du théorème de réflexion, (2) (2) les possibilités pour le type d’isomorphisme du groupe de Galois G5 M = Gal(M5 /M) du (2) second 5-corps de classes de Hilbert M5 de M sont examinées lorsque le 5-groupe de classes (∞) Cl5 (M) est de type (5, 5). En général, la pro-5-extension maximale non ramifiée M5 de M (2) coïncide avec M5 . La longueur précise 5 M de la tour des 5-corps de classes de Hilbert de (2) M est déterminée lorsque G5 M est d’ordre inférieur ou égal à 55 . Les résultats théoriques
Daniel C. Mayer was supported by the Austrian Science Fund (FWF): P 26008-N25.
B
Daniel C. Mayer [email protected] http://www.algebra.at
Extended author information available on the last page of the article
123
A. Azizi et al.
sont étayés par le calcul réel de tous les 83 (resp. 93) cas dans l’intervalle 0 < d < 104 , (resp. −2 · 105 < d < 0). Mathematics Subject Classification Primary 11R37 · 11R29 · 11R11 · 11R16 · 11R20 · 11Y40; Secondary 20D15
1 Introduction The present article arose from the desire to generalize our results [1] for the second 3√ √ (2) class group Gal(k3 /k) of the bicyclic biquadratic field k = Q( −3, d), which is the √ √ compositum of 3-dual quadratic fields k1 = Q( d) and k2 = Q( −3d) in the cubic reflection theorem, to the situation of the quintic reflection theorem. The precise statement of both reflection theorems requires the concept of virtual units. Let p be a prime number and K be a number field with multiplicative group K × = K \{0}, maximal order
Data Loading...