A Construction Method for Discrete Constant Negative Gaussian Curvature Surfaces
This article is an application of the author’s paper (Kobayashi, Nonlinear d’Alembert formula for discrete pseudospherical surfaces, 2015, [9 ]) about a construction method for discrete constant negative Gaussian curvature surfaces, the nonlinear d’Alembe
- PDF / 6,554,754 Bytes
- 155 Pages / 453.543 x 683.15 pts Page_size
- 14 Downloads / 220 Views
Yoshinori Dobashi Hiroyuki Ochiai Editors
Mathematical Progress in Expressive Image Synthesis III Selected and Extended Results from the Symposium MEIS2015
Mathematics for Industry Volume 24
Editor-in-Chief Masato Wakayama (Kyushu University, Japan) Scientific Board Members
Robert S. Anderssen (Commonwealth Scientific and Industrial Research Organisation, Australia) Heinz H. Bauschke (The University of British Columbia, Canada) Philip Broadbridge (La Trobe University, Australia) Jin Cheng (Fudan University, China) Monique Chyba (University of Hawaii at Mānoa, USA) Georges-Henri Cottet (Joseph Fourier University, France) José Alberto Cuminato (University of São Paulo, Brazil) Shin-ichiro Ei (Hokkaido University, Japan) Yasuhide Fukumoto (Kyushu University, Japan) Jonathan R.M. Hosking (IBM T.J. Watson Research Center, USA) Alejandro Jofré (University of Chile, Chile) Kerry Landman (The University of Melbourne, Australia) Robert McKibbin (Massey University, New Zealand) Andrea Parmeggiani (University of Montpellier 2, France) Jill Pipher (Brown University, USA) Konrad Polthier (Free University of Berlin, Germany) Osamu Saeki (Kyushu University, Japan) Wil Schilders (Eindhoven University of Technology, The Netherlands) Zuowei Shen (National University of Singapore, Singapore) Kim-Chuan Toh (National University of Singapore, Singapore) Evgeny Verbitskiy (Leiden University, The Netherlands) Nakahiro Yoshida (The University of Tokyo, Japan) Aims & Scope
The meaning of “Mathematics for Industry” (sometimes abbreviated as MI or MfI) is different from that of “Mathematics in Industry” (or of “Industrial Mathematics”). The latter is restrictive: it tends to be identified with the actual mathematics that specifically arises in the daily management and operation of manufacturing. The former, however, denotes a new research field in mathematics that may serve as a foundation for creating future technologies. This concept was born from the integration and reorganization of pure and applied mathematics in the present day into a fluid and versatile form capable of stimulating awareness of the importance of mathematics in industry, as well as responding to the needs of industrial technologies. The history of this integration and reorganization indicates that this basic idea will someday find increasing utility. Mathematics can be a key technology in modern society. The series aims to promote this trend by (1) providing comprehensive content on applications of mathematics, especially to industry technologies via various types of scientific research, (2) introducing basic, useful, necessary and crucial knowledge for several applications through concrete subjects, and (3) introducing new research results and developments for applications of mathematics in the real world. These points may provide the basis for opening a new mathematicsoriented technological world and even new research fields of mathematics.
More information about this series at http://www.springer.com/series/13254
Yoshinori Dobashi Hiroyuki Ochiai •
Editors
Mathema
Data Loading...