A Dressing Method in Mathematical Physics

The monograph is devoted to the systematic presentation of the so called "dressing method" for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivi

  • PDF / 8,004,290 Bytes
  • 413 Pages / 439.37 x 666.142 pts Page_size
  • 83 Downloads / 196 Views

DOWNLOAD

REPORT


MATHEMATICAL PHYSICS STUDIES Editorial Board:

Maxim Kontsevich, IHES, Bures-sur-Yvette, France Massimo Porrati, New York, University, New York, U.S.A. Vladimir Matveev, Universit´e Bourgogne, Dijon, France Daniel Sternheimer, Universit´e Bourgogne, Dijon, France

VOLUME 28

A Dressing Method in Mathematical Physics by

Evgeny V. Doktorov Institute of Physics, Minsk, Belarus

and

Sergey B. Leble University of Technology, Gdansk, Poland

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-6138-7 (HB) ISBN 978-1-4020-6140-0 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com

Printed on acid-free paper

All Rights Reserved c 2007 Springer  No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

55 udir convienmi ancor come l’essemplo 56 e l’essemplare non vanno d’un modo, 57 ch´e io per me indarno a ci` o contemplo. Dante Alighieri, Divina Commedia Paradiso, Canto XXVIII 55 then I still have to hear just how the model 56 and copy do not share in one same plan 57 for by myself I think on this in vain. Translated by A. Mandelbaum

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1

Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Intertwining relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Ladder operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Definitions and Lie algebra interpretation . . . . . . . . . . . . 1.2.2 Hermitian ladder operators . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Jaynes–Cummings model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Results for differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Commuting ordinary differential operators . . . . . . . . . . . . 1.3.2 Direct consequences of intertwining relations in the matrix case and multidimensions . . . . . . . . . . . . . . 1.4 Hyperspherical coordinate systems and ladder operators . . . . . . 1.5 Laplace transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Matrix factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.2 QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.3 Factorization of the λ matrix . . . . . . . . . . . . . . . . . . . . . . . 1.7 Elementary factorization of matrix . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Ma