A New Design for Friction Stir Spot Joining of Al Alloys and Carbon Fiber-Reinforced Composites

  • PDF / 2,803,680 Bytes
  • 9 Pages / 593.972 x 792 pts Page_size
  • 27 Downloads / 174 Views

DOWNLOAD

REPORT


JMEPEG https://doi.org/10.1007/s11665-020-04998-1

A New Design for Friction Stir Spot Joining of Al Alloys and Carbon Fiber-Reinforced Composites Amir Bolouri

, Mohamad Fotouhi, and William Moseley

(Submitted November 16, 2019; in revised form July 9, 2020) Friction stir spot welding (FSSW) has been recently developed to join dissimilar materials. However, the traditional requirement for a rotating tool consists of a pin and shoulder in FSSW leads to a complex joining process and unpredictable defects. In this study, a new static-shoulder design in FSSW was proposed and developed to join Al alloys to carbon fiber-reinforced polymer (CFRP) composites. The main joining parameters, including pin rotational speed, pin feed rate and pin plunge depth, were varied to investigate their effects on the joining temperature, materials interaction and the strength of joints. The pin rotational speed had the largest influence on the joining temperature. Lap shear tensile testing was conducted to evaluate the performance of the joints. The joints exhibited the ultimate lap shear force from 230 to 260 N. A brittle fracture occurred with the displacement-at-fracture load of 0.35-0.41 mm. Cross-sectional images revealed the creation of undulations on the surface of Al alloys in the joining zone. The undulations created a macro-mechanical interlocking bonding between the materials, which determined the performance of the joints. For a flat pin, by increasing the plunge depth from 1.25 to 1.30 mm, the undulation size increased from 0.21 to 0.26 mm, which can enhance the macro-mechanical interlocking bonding between Al alloys and CFRP and accordingly increased the ultimate shear force of the joints from 230 to 241 N. Use of a fluted pin significantly influenced the flow of the plasticized Al alloy which created pronounced undulations and large Al alloy spikes of 0.46 mm. These features seemed to establish an efficient macro-mechanical interlocking bonding, which resulted in a noticeable improvement in the performance of the joint. For a plunge depth of 1.30 mm, the ultimate shear force increased to 261 N using the fluted pin. Keywords

Al alloys, composite, dissimilar materials joining, friction stir spot joining

1. Introduction Manufacturers in the transportation sector are constantly seeking to reduce the weight of vehicles (Ref 1). Demanding environmental and economic regulations and policies are forcing companies to increasingly develop and utilize lightweight structures. The conjoined use of dissimilar materials such as light alloys and polymer matrix composites is becoming a progressively popular and common solution (Ref 2, 3). An example of the implementation of hybrid structures (Al alloys and composites) in the automotive industry is the Audi R8, which is 15% lighter than its predecessor while boasting a 40% improvement in torsional rigidity. The joining of metals and This article is an invited submission to JMEP selected from presentations at the Symposium ‘‘Joining and Related Technologies,’’ belonging to the topic ‘‘Processing’’