A. Paul Alivisatos to receive 2011 Von Hippel Award for colloidal nanoparticles

  • PDF / 283,254 Bytes
  • 2 Pages / 585 x 783 pts Page_size
  • 15 Downloads / 166 Views

DOWNLOAD

REPORT


A. Paul Alivisatos to receive 2011 Von Hippel Award for colloidal nanoparticles

T

he 2011 Von Hippel Award, the Material Research Society’s highest honor, will be presented to A. Paul Alivisatos, director of the Lawrence Berkeley National Laboratory and Larry and Diane Bock Professor of Nanotechnology, University of California–Berkeley. Alivisatos is being recognized for “the development of the fundamental scientific basis for growing and utilizing defect-free colloidal semiconductor nanoparticles, providing the basis for biological imaging, solid-state lighting, and the capture and conversion of solar energy to electricity.” Alivisatos will accept the honor during the awards ceremony at the 2011 MRS Fall Meeting in Boston. One of the most important building blocks of nanoscience is the colloidal nanocrystal. High-quality, defect-free colloidal inorganic nanoparticles of controlled size and shape are now made routinely by thousands of research groups around the world, and their sizedependent properties are widely studied. A few key foundational studies by Alivisatos and co-workers provided an understanding of the underlying principles and scaling laws needed for this class of material to be developed. Alivisatos has mapped out the sizedependent melting of quantum dot semiconductor materials, showing how it is possible to anneal out defects, and to eject impurities from a growing colloidal nanoparticle formed at just a few hundred degrees C, well below the temperatures needed to form high-quality epitaxial two-dimensional films. Alivisatos also showed that size control depends upon careful separation of nucleation

and growth, as well as the time scales involved, and upon the concept of “size distribution focusing,” in which the distribution of nanoparticle sizes is narrowed when small particles grow faster than large ones. Proof of the high quality of nanocrystals is gleaned from studies of optical properties, as well as from studies of the structural transformations of nanoparticles under high pressure, demonstrating the absence of defects. The synthesis of high-quality colloidal nanocrystals rests upon key work by Alivisatos, and is an essential component of the development of colloidal quantum dots and other nanocrystals. Colloidal quantum dots are the size of a protein molecule, and when appropriately functionalized, can be introduced inside cells and tissues as biological labels. They are used currently in fluorescent imaging in biology because they do not bleach and they yield a family of solid-state materials with a wide range of emission colors and superior luminescence characteristics, yet they can be processed in solution to make them biocompatible. Alivisatos founded Quantum Dot Corporation, which makes colloidal quantum dots commercially available to researchers. In 1994, Alivisatos and co-workers demonstrated the first light-emitting diodes made with colloidal quantum dots, the basis of some early quantum dot solid-state lighting products with low manufacturing cost, high color purity, and low energy