Accelerated hyperfractionation plus temozolomide in glioblastoma

  • PDF / 576,720 Bytes
  • 7 Pages / 595.276 x 790.866 pts Page_size
  • 27 Downloads / 183 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Accelerated hyperfractionation plus temozolomide in glioblastoma David Kaul*†, Julian Florange†, Harun Badakhshi, Arne Grün, Pirus Ghadjar, Sebastian Exner and Volker Budach

Abstract Introduction: Hyperfractionated (HFRT) or accelerated hyperfractionated radiotherapy (AHFRT) have been discussed as a potential treatment for glioblastoma based on a hypothesized reduction of late radiation injury and prevention of repopulation. HFRT and AHFRT have been examined extensively in the pre-Temozolomide era with inconclusive results. In this study we examined the role of accelerated hyperfractionation in the Temozolomide era. Materials and methods: Sixty-four patients who underwent AHFRT (62 of which received Temozolomide) were compared to 67 patients who underwent normofractionated radiotherapy (NFRT) (64 of which received TMZ) between 02/2009 and 10/2014. Follow-up data were analyzed until 01/2015. Results: Median progression-free survival (PFS) was 6 months for the entire cohort. For patients treated with NFRT median PFS was 7 months, for patients treated with AHFRT median PFS was 6 months. Median overall survival (OS) was 13 months for all patients. For patients treated with NFRT median OS was 15 months, for patients treated with AHFRT median OS was 10 months. The fractionation regimen was not a predictor of PFS or OS in univariable- or multivariable analysis. There was no difference in acute toxicity profiles between the two treatment groups. Conclusions: Univariable and multivariable analysis did not show significant differences between NFRT and AHFRT fractionation regimens in terms of PFS or OS. The benefits are immanent: the regimen does significantly shorten hospitalization time in a patient collective with highly impaired life expectancy. We propose that the role of AHFRT + TMZ should be further examined in future prospective trials.

Introduction Gliomas are the most common primary tumors of the central nervous system (CNS) in adults representing about one third of central nervous system tumors and 81 % of all malignant CNS tumors reported in the United States [1]. The most common and most malignant type of glioma is glioblastoma (GBM), with a median overall survival (OS) rate of 15 months after surgical resection followed by adjuvant radiotherapy (RT) and Temozolomide (TMZ) chemotherapy. The prevalence of GBM is highest in patients aged 50 years or older and is likely to increase with the ongoing demographic shift toward older ages [2]. Well-known postitive prognostic factors for OS in GBM patients are young age at diagnosis, high Karnofsky performance score (KPS), great extent of neurosurgical * Correspondence: [email protected] † Equal contributors Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany

resection, O-6-methylguanine-DNA methyltransferase- gene (MGMT) methylation as well as isocitrate dehydrogenase (IDH) 1-mutational status [3–5]. Current standard of care for newly diagn