Additional Imaging Techniques in Pediatric Dental Practice

This chapter contains information on machines and techniques not covered in the previous chapters. However, that doesn’t mean these are not used in pediatric dentistry; it is just that most of them are not available in a private dental setting, as either

  • PDF / 773,608 Bytes
  • 7 Pages / 439.37 x 666.142 pts Page_size
  • 44 Downloads / 247 Views

DOWNLOAD

REPORT


Additional Imaging Techniques in Pediatric Dental Practice

This chapter contains information on machines and techniques not covered in the previous chapters. However, that doesn’t mean these are not used in pediatric dentistry; it is just that most of them are not available in a private dental setting, as either they are very specialized and require specially trained radiographers and technicians to operate the machines or the technology is very expensive and will only be found in hospitals. Nevertheless, pediatric dentists should be aware of these techniques and imaging modalities as they might be faced with medically compromised patients requiring this type of imaging. Just as with the techniques described and discussed in the previous chapters, every technique has its applications and indications, as well as contraindications.

5.1

Multislice Computed Tomography (MSCT)

Sir Godfrey Hounsfield invented computed tomography in 1973. Since then many improvements have been realized to increase image quality and patient comfort. Professor Willi Kalender is credited for his significant contributions to develop helical computed tomography. Commonly this technique is called “a CT.” It is however very different from the cone beam computed tomography (CBCT) that was discussed in Chap. 4. Multislice CT uses a narrow fan-shaped beam, which revolves around the patient, while on the opposite side of the patient image detectors capture the image. The patient is simultaneously moved slow or fast through that X-ray field. If it is done fast, the resolution will be low, as the slices will be thicker (large pitch), whereas if the patient is moved slowly through the X-ray field, the slice thickness is thinner (smaller pitch) and hence the resolution is higher (maximum 350 μm, compared to CBCT where the highest resolution today is 70 μm). However, one has to keep in mind that the higher the resolution, the higher the radiation dose will be. These machines require the patient to lie absolutely still on a table, while the table is moved into the machine’s gantry.

© Springer Nature Switzerland AG 2019 J. Aps, Imaging in Pediatric Dental Practice, https://doi.org/10.1007/978-3-030-12354-3_5

51

52

5  Additional Imaging Techniques in Pediatric Dental Practice

At the writing of this chapter, the fourth-generation CT scanners have been developed and are referred to as stationary-rotate geometry scanners as the X-ray tube rotates within a stationary circle of detectors. Technology allows the detectors to be arranged in a continuous circular array containing as many as 40,000 individual detectors. Whereas in the past scanning time could be substantially long (minutes), today that scanning time is merely a few seconds anymore. The latter causes less movement artifacts to be present in the image, which is a great advantage. However, the resolution of the image can be affected negatively by this fast scanning, as the patient is moved faster through the gantry. Reducing the speed would increase the resolution, but also the radiation dose