Adjusting protein graphs based on graph entropy
- PDF / 980,051 Bytes
- 8 Pages / 595.276 x 793.701 pts Page_size
- 70 Downloads / 198 Views
PROCEEDINGS
Open Access
Adjusting protein graphs based on graph entropy Sheng-Lung Peng*, Yu-Wei Tsay From 2013 International Conference on Intelligent Computing (ICIC 2013) Nanning, China. 28-31 July 2013
Abstract Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. Background Graph theory is now widely used in information theory, combinatorial optimization, structural biology, chemical molecule, and many other fields. Graph similarity measuring is a practical approach in various fields. When graphs are used to represent of structured objects, the problem of measuring similarities between objects becomes one of computing similarities between graphs [1]. Protein remodeling is another field wherein multiple-domains within structures are considerably complicated. It is believed that proteins are important molecules for living organisms. In fact, they are essential parts of organisms and participate in almost every process within cells. A protein contains at least one linear chain of amino acid residues called a polypeptide. By various synthesis, e.g., biosynthesis and chemical synthesis, a polypeptide is folded into a unique 3-dimensional structure. Usually, the structure of a protein determines its biological function performed in organisms. Knowledge of a protein structure can help us understand biological functions and evolution. Measuring protein similarities according to 3-dimensional structures of proteins * Correspondence: [email protected] Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien 974, Taiwan
provides a valuable tool for evaluating proteins with low sequence similarities when evolutionary relations among proteins cannot be detected by sequence alignment techniques. To perform a structural comparison of molecules, accurate information of two superimposed protein structures must be obtained. However, optimizing these two quantities simultaneously is difficult. Unlike the sequence alignment proble
Data Loading...