Analytic and Geometric Study of Stratified Spaces
- PDF / 13,565,239 Bytes
- 233 Pages / 414.72 x 664.02 pts Page_size
- 88 Downloads / 285 Views
		    1768
 
 3 Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo
 
 Markus J. Pflaum
 
 Analytic and Geometric Study of Stratified Spaces
 
 123
 
 Author Markus J. Pflaum Department of Mathematics Humboldt University Rudower Chaussee 25 10099 Berlin, Germany E-mail: [email protected]
 
 Cataloging-in-Publication Data applied for
 
 Mathematics Subject Classification (2000): 58Axx, 32S60, 35S35, 16E40, 14B05, 13D03 ISSN 0075-8434 ISBN 3-540-42626-4 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH http://www.springer.de © Springer-Verlag Berlin Heidelberg 2001 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Camera-ready TEX output by the author SPIN: 10852611
 
 41/3142-543210/du - Printed on acid-free paper
 
 For
 
 Stephanie and
 
 Konstantin
 
 Contents
 
 1
 
 Introduction
 
 11
 
 Notation 1
 
 2
 
 1.1
 
 Spaces and Functional Structures Decomposed spaces
 
 1.2
 
 Stratifications
 
 1.3
 
 Smooth Structures
 
 1.4
 
 Local
 
 1.5
 
 The, sheaf of
 
 1.6
 
 Rectifiable
 
 1.7
 
 Extension
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 and the
 
 Triviality Whitney
 
 conditions
 
 Whitney
 
 functions
 
 .
 
 .
 
 .
 
 theory for
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 15
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 22
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 26
 
 .
 
 .
 
 .
 
 .
 
 34
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 44
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 53
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 63
 
 on
 
 regular
 
 spaces
 
 Singular Spaces Whitney's condition (A)
 
 Metrics and
 
 2.5
 
 Differential operators
 
 2.6
 
 Poisson structures
 
 .
 
 .
 
 .
 
 space structures
 
 63
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 65
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 68
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 71
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 80
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 83
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .
 
 .		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	