Anamorphosis Reformed: From Optical Illusions to Immersive Perspectives

We discuss a definition of conical anamorphosis that sets it at the foundation of both classical and curvilinear perspectives. In this view, anamorphosis is an equivalence relation between three-dimensional objects, which includes two-dimensional represen

  • PDF / 2,034,614 Bytes
  • 68 Pages / 439.36 x 666.15 pts Page_size
  • 95 Downloads / 193 Views

DOWNLOAD

REPORT


Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anamorphosis Formed Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Empirical Principle: Radial Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anamorphosis Formed Fast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Some Considerations on Anamorphosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anamorphosis Formally Reformed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anamorphosis as a Mathematical Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplifications: Talking to Artists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Descriptive Geometry Construction of Anamorphoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Handmade vs Digital Anamorphoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dürer Machines Running Back and Forth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spherical Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Problem with Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 6 6 8 13 19 19 21 36 37 39 39 40 46 51 56 64 64 64

Abstract We discuss a definition of conical anamorphosis that sets it at the foundation of both classical and curvilinear perspectives. In this view, anamorphosis is an equivalence relation between three-dimensional objects, which includes two-

A. B. Araújo () CIAC-UAb, Center for Research in Arts and Communication, Universidade Aberta, Lisbon, Portugal e-mail: [email protected] © Springer Nature Switzerland AG 2020 B. Sriraman (ed.), Handbook of the Mathematics of the Arts and Sciences, https://doi.org/10.1007/978-3-319-70658