Annihilation of vacancies by small angle grain boundaries during sintering

  • PDF / 545,678 Bytes
  • 3 Pages / 612 x 792 pts (letter) Page_size
  • 106 Downloads / 232 Views

DOWNLOAD

REPORT


Run No.

T, °K

Cp, Cal/Deg G-Atom

21 20 19 18 17 16

801.7 801.8 755.2 755.3 698.1 698.1

6.69 6.72 6.83 6.76 6.79 6.86

6 5 4 3

653.4 653.4 606.3 606.8

6.92 6.92 7.03 6.92

Run No. 8 7 2 1 11 10 12 13 9 15 14

T, °K

Cp, Cal/Deg G-Atom

577.4 577.4 558.5 558.5 545.9 546.6 545.4 545.4 546.6 544.8 545.2

7.13 7.13 7.22 7.21 7.32 7.29 7.28 7.33 7.30 7.34 7.27

Table II. Selected Data for Liquid Bismuth

T, °K

Cal/DegG-Atom

HT - H29s, Cal/G-Atom

544.5 (M.P.) 550 600 650 700 750 800

7.27(±0.1) 7.04 6.93 6.85 6.78 6.72

4200 4240 4597 4946 5290 5631 5969

8.0

k UMINO AH

7.E o3 w ta re'

F=

z~

.'a 76

AI

fl

O

(.9 tl.I O

A

~E 7:4

O THIS INVESTIGATION rl CARPENTER ond HARLE Cp W WLIST, MEUTHEN ond DURRER AH A F{~RSTER and TSCHENTKE Cp 0 PERSON Cp

"~. 7.Z

S 7.o (J &

Q

--.%

anomaly spreading over a limited n u m b e r of d e g r e e s ; not the g r a d u a l effect found. The experimental Cp c u r v e is more in a c c o r d with the theory of Kincaid and Eyring, Is who consider the c h e m i c a l bonding gradually changes to that in a mortatomic gas; Cp decreasing toward 5R/2 at high temperatures. A statistical mechanical treatment of Chapman 16 indicates Cv of all liquid m e t a l s should decline w i t h increasing temperatures. Hg, K, and N a also follow this r u l e . The upturn in Cp of t h e s e m e t a l s at high temperatures is due entirely t o the Cp-Cv t e r m . The six m e t a l s for which t h e r e was sufficient data all followed Chapman's equation within +10 p c t . It is hoped the data for bismuth presented above will provide tests for this and o t h e r theories of the liquid state. The experimental work for this paper was supported by the Office of Ordnance R e s e a r c h , U. S. Army and by the U. S. Atomic E n e r g y Commission and the Inorg a n i c Materials R e s e a r c h Division of the L a w r e n c e Radiation Laboratory, Berkeley, California. 1. C. O. Smith: Nuclear Reactor Materials, Addison-Wesley Publishing Co., Reading, Mass., 1967. 2, A. R. Kaufmann, ed.: Nuelear Reactor Fuel Elements, Interscience Publishers, New York, 1962. 3. L. G. Carpenter and T. F. Hade: Proc. Roy. Soc., London, 1932, vol. 136A, p. 243. 4. F. FSrster and G. Tschentke: Z. Metallk., 1940, vol. 32, p. 191. 5. C. C. Person:Ann. Chim. Phys., 1848, vol. 24, p. 128. 6. S. Umino: Sci. Rep., Tohoku Imp. Univ., 1926, vol. 15, p. 597, 7. A. Wiist, A. Meuthen, and R. Durrer: Forsch. Geb. lngenieurw., 1918, vol. 204, p. 1. 8. K. K. Kelley: U.S. Bur. Mines, Bull,, 1960, no. 584. 9. R. L. Orr, A. Goldberg, and R. Hultgren: Rev. Sci. Instrum., 1957, vol. 28, p. 767. 10. H. Heffan: Master's Thesis, University ofCalifornia, 1958. 11. R. Hultgren, R. L. Orr, P. O. Anderson, and K. K. Kelley: Selected Values o f Thermodynamic Properties o f Metal and Alloys, John Wiley & Sons, Inc., New York, 1963. 12. A. Latin: J. Inst. Metals, 1940, vol. 66, p. 177. 13. A. I. Bublik and A. G. Buntar: Fiz. Metal. Metalloved., 1957, vol. 5, p. 53. 14. R. Hultgren and R. L. Orr: Rev. Int. Hautes Temper. R~fract., 1967, vol. 4, p. 1