Anti-traffic analysis attack for location privacy in WSNs
- PDF / 1,371,954 Bytes
- 15 Pages / 595.276 x 793.701 pts Page_size
- 54 Downloads / 172 Views
RESEARCH
Open Access
Anti-traffic analysis attack for location privacy in WSNs Bi Di Ying1*, Dimitrios Makrakis2 and Hussein T Mouftah2
Abstract Traditional encryption and authentication methods are not effective in preserving a sink's location privacy from a global adversary that is monitoring the network traffic. In this paper, we first propose a novel anti-traffic analysis (ATA) method to preserve the sink's location privacy. In order to confuse a local or global adversary, each node generates dummy messages, the number of which is dependent on the number of the node's children. Hence, ATA is able to prevent the adversary from acquiring valuable information on the sink's location through the traffic analysis attack. However, a larger number of dummy messages lead to consumption of extra energy. Then, we design our improved ATA (IATA) in such a way that we select some sensors to act as fake sinks, to ensure that sensors around fake sinks generate dummy messages and discard received dummy messages. Since the problem of the optimal fake sinks' placement is nondeterministic polynomial time (NP)-hard, we employ local search heuristics based on network traffic and security entropy. Performance analysis of the ATA scheme can protect the sink's location privacy, and IATA scheme can reduce energy consumption. Keywords: Sensor network; Traffic analysis attack; Privacy
1. Introduction Wireless sensor networks (WSNs) are deployed to support the sensing and communication needs of the deploying entity. Due to the broadcasting nature of wireless communication medium, adversaries can eavesdrop on network traffic to obtain valuable information. Existing security technologies cannot always protect the cyber-security needs of users and the run applications, in terms of data confidentially and integrity and user privacy and anonymity. Network traffic analysis can be used by an adversary to extra important information related to the node location, functionality, and identity. Traffic patterns of WSNs can reveal a great deal of contextual information, which can disclose the location of critical nodes. For example, sensing data are transmitted along relatively fixed paths connecting source nodes to a sink. This produces quite easily identifiable traffic patterns that reveal a sink's location. In addition, the sensing nodes having one-hop distance from the sink have to forward a significantly greater volume of packets, since * Correspondence: [email protected] 1 School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China Full list of author information is available at the end of the article
they have to route all the traffic generated by all those nodes that are farther than nodes having one-hop away from the sink. An adversary having a global view of WSN's traffic activity can deduce the location of the sink by observing and analyzing the traffic volume distribution within WSN's coverage area for an adequately long time interval. Discovery of a sink's location may allow the adv
Data Loading...