Arithmetic on Modular Curves

One of the most intriguing problems of modern number theory is to relate the arithmetic of abelian varieties to the special values of associated L-functions. A very precise conjecture has been formulated for elliptic curves by Birc~ and Swinnerton-Dyer an

  • PDF / 8,506,840 Bytes
  • 234 Pages / 430.92 x 649.08 pts Page_size
  • 18 Downloads / 279 Views

DOWNLOAD

REPORT


Progress in Mathematics Vol. 20 Edited by J. Coates and S. Helgason

Birkhauser Boston· Basel· Stuttgart

Glenn Stevens

Arithmetic on Modular Curves

1982

Birkhiiuser Boston • Basel • Stuttgart

Author: Gl enn Ste'lens Department of ~athematics Rutgers University New Brunswick, New Jersey 08903

of Conqress Cataloqing in Publication Data Stevens, Glenn, 1953Arithmetic on modular curves. (Progress in mathematics; v. 20) includes bibliographical references. 1. Forms, Modular. 2. Curves, Modular. 3. L-functions. 4. Conqruences and residues. I. Title. II. Series: Progress in mathematics (Cal'lbridge, Mass.) ; 20. QA243.S77 512' .72 82-4306 AACR2

~ibrary

CIP-Kurztitelaufnahme der Deutschen Bibliothek Stevens, Glenn: Arithl'letic on I'lodular curves I Glenn Stevens. -Boston; Basel; Stuttqart : BirkhJuser, 1982. (progress in mathel'latics ; Vol.20) NE: GT

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner. ©Bi rkh~user Boston, 1982 ISBN 978-0-8176-3088-1

ISBN 978-1-4684-9165-4 (eBook)

DOI 10.1007/978-1-4684-9165-4

Dedicated to Mrs. Helen Hammitt

Table of Contents

Introduction Chapter 1.

Background

1

1. 1.

Modular Curves

4

1. 2.

Hecke Operators

7

1. 3.

The Cusps

11

1. 4.

1[-modules and Periods of Cusp Forms

18

1. 5.

Congruences

24

1. 6.

The Universal Special Values

27

1. 7.

Points of finite order in Pic 0 (X (r»

32

1. 8.

Eisenstein Series and the Cuspidal Group

35

Chapter 2.

Periods of Modular Forms

43

2. 1.

L-functions

45

2.2.

A Calculus of Special Values

48

2.3.

The Cocycle TT f and Periods of Modular Forms

51

2.4.

Eisenstein Series

55

2.5.

Periods of Eisenstein Series

66

Chapter 3.

The Special Values Associated to Cuspidal Groups

76

3.1.

Special Values Associated to the Cuspidal Group

78

3.2.

Hecke Operators and Galois Modules

84

3.3.

An Aside on Dirichlet L-functions

90

3.4.

Eigenfunctions in the Space of Eisenstein Series

93

3.5.

NOTlvanishing Theorems

101

3.6.

The Group of Periods

103

viii

Chapter 4.

Congruences

107

4. 1.

Eisenstein Ideals

109

4.2.

Congruences Satisfied by Values of L-functions

115

4.3.

Two Examples: X 1 (13),X O(7,7)

122

Chapter 5.

P-adic L-functions and Congruences

126

5. 1.

Distributions, Measures and p-adic L-functions

128

5. 2.

Construction of Distributions

134

5.3.

Universal measures and measures associated to cusp forms

141

5.4.

Measures associated to Eisenstein Series

146

5.5.

The Modular Symbol associated to E

151

5.6.

Congruences Between p-adlc L-functions

157

Chapter 6.

Tables of Special Values

166

6. 1.

Xo (N), N prime :: 43

167

6.2.

Genus One Curves, Xo (N)

188

6.3.

Xl (13), Odd quadratic characters

205

Bibliography

211

Introduction

One of the most intriguing problems of modern number theory is to relate the arithmetic of abelian varieties to the special value