Arithmetic on Modular Curves
One of the most intriguing problems of modern number theory is to relate the arithmetic of abelian varieties to the special values of associated L-functions. A very precise conjecture has been formulated for elliptic curves by Birc~ and Swinnerton-Dyer an
- PDF / 8,506,840 Bytes
- 234 Pages / 430.92 x 649.08 pts Page_size
- 18 Downloads / 329 Views
		    Progress in Mathematics Vol. 20 Edited by J. Coates and S. Helgason
 
 Birkhauser Boston· Basel· Stuttgart
 
 Glenn Stevens
 
 Arithmetic on Modular Curves
 
 1982
 
 Birkhiiuser Boston • Basel • Stuttgart
 
 Author: Gl enn Ste'lens Department of ~athematics Rutgers University New Brunswick, New Jersey 08903
 
 of Conqress Cataloqing in Publication Data Stevens, Glenn, 1953Arithmetic on modular curves. (Progress in mathematics; v. 20) includes bibliographical references. 1. Forms, Modular. 2. Curves, Modular. 3. L-functions. 4. Conqruences and residues. I. Title. II. Series: Progress in mathematics (Cal'lbridge, Mass.) ; 20. QA243.S77 512' .72 82-4306 AACR2
 
 ~ibrary
 
 CIP-Kurztitelaufnahme der Deutschen Bibliothek Stevens, Glenn: Arithl'letic on I'lodular curves I Glenn Stevens. -Boston; Basel; Stuttqart : BirkhJuser, 1982. (progress in mathel'latics ; Vol.20) NE: GT
 
 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner. ©Bi rkh~user Boston, 1982 ISBN 978-0-8176-3088-1
 
 ISBN 978-1-4684-9165-4 (eBook)
 
 DOI 10.1007/978-1-4684-9165-4
 
 Dedicated to Mrs. Helen Hammitt
 
 Table of Contents
 
 Introduction Chapter 1.
 
 Background
 
 1
 
 1. 1.
 
 Modular Curves
 
 4
 
 1. 2.
 
 Hecke Operators
 
 7
 
 1. 3.
 
 The Cusps
 
 11
 
 1. 4.
 
 1[-modules and Periods of Cusp Forms
 
 18
 
 1. 5.
 
 Congruences
 
 24
 
 1. 6.
 
 The Universal Special Values
 
 27
 
 1. 7.
 
 Points of finite order in Pic 0 (X (r»
 
 32
 
 1. 8.
 
 Eisenstein Series and the Cuspidal Group
 
 35
 
 Chapter 2.
 
 Periods of Modular Forms
 
 43
 
 2. 1.
 
 L-functions
 
 45
 
 2.2.
 
 A Calculus of Special Values
 
 48
 
 2.3.
 
 The Cocycle TT f and Periods of Modular Forms
 
 51
 
 2.4.
 
 Eisenstein Series
 
 55
 
 2.5.
 
 Periods of Eisenstein Series
 
 66
 
 Chapter 3.
 
 The Special Values Associated to Cuspidal Groups
 
 76
 
 3.1.
 
 Special Values Associated to the Cuspidal Group
 
 78
 
 3.2.
 
 Hecke Operators and Galois Modules
 
 84
 
 3.3.
 
 An Aside on Dirichlet L-functions
 
 90
 
 3.4.
 
 Eigenfunctions in the Space of Eisenstein Series
 
 93
 
 3.5.
 
 NOTlvanishing Theorems
 
 101
 
 3.6.
 
 The Group of Periods
 
 103
 
 viii
 
 Chapter 4.
 
 Congruences
 
 107
 
 4. 1.
 
 Eisenstein Ideals
 
 109
 
 4.2.
 
 Congruences Satisfied by Values of L-functions
 
 115
 
 4.3.
 
 Two Examples: X 1 (13),X O(7,7)
 
 122
 
 Chapter 5.
 
 P-adic L-functions and Congruences
 
 126
 
 5. 1.
 
 Distributions, Measures and p-adic L-functions
 
 128
 
 5. 2.
 
 Construction of Distributions
 
 134
 
 5.3.
 
 Universal measures and measures associated to cusp forms
 
 141
 
 5.4.
 
 Measures associated to Eisenstein Series
 
 146
 
 5.5.
 
 The Modular Symbol associated to E
 
 151
 
 5.6.
 
 Congruences Between p-adlc L-functions
 
 157
 
 Chapter 6.
 
 Tables of Special Values
 
 166
 
 6. 1.
 
 Xo (N), N prime :: 43
 
 167
 
 6.2.
 
 Genus One Curves, Xo (N)
 
 188
 
 6.3.
 
 Xl (13), Odd quadratic characters
 
 205
 
 Bibliography
 
 211
 
 Introduction
 
 One of the most intriguing problems of modern number theory is to relate the arithmetic of abelian varieties to the special value		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	