ASP5094, a humanized monoclonal antibody against integrin alpha-9, did not show efficacy in patients with rheumatoid art

  • PDF / 931,412 Bytes
  • 11 Pages / 595.276 x 790.866 pts Page_size
  • 10 Downloads / 148 Views

DOWNLOAD

REPORT


(2020) 22:252

RESEARCH ARTICLE

Open Access

ASP5094, a humanized monoclonal antibody against integrin alpha-9, did not show efficacy in patients with rheumatoid arthritis refractory to methotrexate: results from a phase 2a, randomized, double-blind, placebo-controlled trial Tsutomu Takeuchi1* , Yoshiya Tanaka2, Jay Erdman3, Yuichiro Kaneko4, Masako Saito4, Chieri Higashitani4, Ronald Smulders3 and Christopher Lademacher3

Abstract Background: Rheumatoid arthritis (RA) is a chronic, debilitating autoimmune condition characterized by joint synovial inflammation. Current treatments include methotrexate (MTX), biologic agents, and Janus kinase (JAK) inhibitors. However, these agents are not efficacious in all patients and there are concerns regarding side effects and risk of infection as these treatments target immune-related pathways. Overexpression and activation of integrin alpha-9 (α9) on fibroblast-like synoviocytes are associated with RA disease onset and exacerbation. The humanized immunoglobulin G1 monoclonal antibody ASP5094 was designed to inhibit human α9 and is currently under investigation for the treatment of RA. Methods: This phase 2a, multicenter, randomized, placebo-controlled, double-blind, parallel-group study (NCT03257852) evaluated the efficacy, safety, and biological activity of intravenous ASP5094 10 mg/kg in patients with moderate to severe RA that was refractory to MTX. Patients received ASP5094 or placebo every 4 weeks for a total of three administrations. Both treatment groups used concomitant MTX. The primary efficacy endpoint was the proportion of patients who responded per American College of Rheumatology 50% improvement using C-reactive protein (ACR50-CRP) after 12 weeks of treatment. Biological activity of ASP5094 was assessed via pharmacokinetics and pharmacodynamics of known downstream effectors of α9. Safety was also assessed. (Continued on next page)

* Correspondence: [email protected] 1 Keio University School of Medicine, 35 Shinanomachi, Shinjuku City, Tokyo 160-8582, Japan Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.or