Asymptotic Approaches in Nonlinear Dynamics New Trends and Appli

How well is Nature simulated by the varied asymptotic models that imaginative scientists have invented? B. Birkhoff [52J This book deals with asymptotic methods in nonlinear dynamics. For the first time a detailed and systematic treatment of new asymptoti

  • PDF / 26,887,885 Bytes
  • 321 Pages / 439 x 666 pts Page_size
  • 67 Downloads / 175 Views

DOWNLOAD

REPORT


Springer

Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Singapore Tokyo

Springer Series in Synergetics

Editor: Hermann Haken

An ever increasing number of scientific disciplines deal with complex systems. These are systems that are composed of many parts which interact with one another in a more or less complicated manner. One of the most striking features of many such systems is their ability to spontaneously form spatial or temporal structures. A great variety of these structures are found, in both the inanimate and the living world. In the inanimate world of physics and chemistry, examples include the growth of crystals, coherent oscillations oflaser light, and the spiral structures formed in fluids and chemical reactions. In biology we encounter the growth of plants and animals (morphogenesis) and the evolution of species. In medicine we observe, for instance, the electromagnetic activity of the brain with its pronounced spatio-temporal structures. Psychology deals with characteristic features of human behavior ranging from simple pattern recognition tasks to complex patterns of social behavior. Examples from sociology include the formation of public opinion and cooperation or competition between social groups. In recent decades, it has become increasingly evident that all these seemingly quite different kinds of structure formation have a number ofimportant features in common. The task of studying analogies as well as differences between structure formation in these different fields has proved to be an ambitious but highly rewarding endeavor. The Springer Series in Synergetics provides a forum for interdisciplinary research and discussions on this fascinating new scientific challenge. It deals with both experimental and theoretical aspects. The scientific community and the interested layman are becoming ever more conscious of concepts such as self-organization, instabilities, deterministic chaos, nonlinearity, dynamical systems, stochastic processes, and complexity. All of these concepts are facets of a field that tackles complex systems, namely synergetics. Students, research workers, university teachers, and interested laymen can find the details and latest developments in the Springer Series in Synergetics, which publishes textbooks, monographs and, occasionally, proceedings. As witnessed by the previously published volumes, this series has always been at the forefront of modern research in the above mentioned fields. It includes textbooks on all aspects of this rapidly growing field, books which provide a sound basis for the study of complex systems. A selection of volumes in the Springer Series in Synergetics: Synergetics An Introduction 3rd Edition By H. Haken Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences 2nd Edition By C. W. Gardiner Noise-Induced Transitions Theory and Applications in Physics, Chemistry, and Biology By W. Horsthemke, R. Lefever The Fokker-Planck Equation 2nd Edition By H. Risken Nonequilibrium Phase Transitions in Semico