Avoiding unnecessary information loss: correct and efficient model synchronization based on triple graph grammars
- PDF / 3,972,969 Bytes
- 34 Pages / 595.276 x 790.866 pts Page_size
- 114 Downloads / 198 Views
STTT Special Issue: FASE 2019
Avoiding unnecessary information loss: correct and efficient model synchronization based on triple graph grammars Lars Fritsche1 · Jens Kosiol2 · Andy Schürr1 · Gabriele Taentzer2
© The Author(s) 2020
Abstract Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple graph grammars (TGGs) specify model consistency by means of rules that describe how to create consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when deleted elements contain information that is not represented in the second model, this information cannot be recovered easily. Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements. In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have considerably decreased information loss and improved performance compared to former model synchronization processes based on TGGs. Keywords Bidirectional transformation · Model synchronization · Triple graph grammar · Incremental pattern matching · Change propagation
1 Introduction The close collaboration of multiple disciplines such as electrical engineering, mechanical engineering, and software
B B
Lars Fritsche [email protected] Jens Kosiol [email protected] Andy Schürr [email protected] Gabriele Taentzer [email protected]
1
Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
2
Faculty of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg, Germany
engineering in system design often leads to disciplinespanning system models [27]. Keeping models synchronized by checking and preserving their consistency can be a challenging problem which is not only subject to ongoing research but also of practical interest for industrial applications. Model-based engineering has become an important technique to cope with the incre
Data Loading...