Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles

  • PDF / 2,957,756 Bytes
  • 13 Pages / 595.276 x 793.701 pts Page_size
  • 55 Downloads / 210 Views

DOWNLOAD

REPORT


NANO EXPRESS

Open Access

Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles Jing Ruan†, Kan Wang†, Hua Song, Xin Xu, Jiajia Ji and Daxiang Cui*

Abstract Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs’ biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy. Introduction Up to date, nanomaterials and nanotechnology have shown great potentials in disease diagnosis and therapy [1-7]. For example, a broad range of nanoscale inorganic particles including magnetic nanoparticles (MNPs) and quantum dots (QDs) have been systematically investigated for their unique physical, chemical properties, and their potential application in bio-detection, molecular imaging, and photothermal therapy of tumors [8-16]. Especially, MNPs have been used for magnetic resonance imaging (MRI), gene delivery, cell separation and cancer hyperthermia [17-19], and magnetic targeting, which provides an alternative method for targeted drug delivery systems to the desired location [20-22]. Up to * Correspondence: [email protected] † Contributed equally National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China

da