Black hole dynamics in power-law based metric f ( R ) gravity

  • PDF / 378,671 Bytes
  • 16 Pages / 439.37 x 666.142 pts Page_size
  • 80 Downloads / 182 Views

DOWNLOAD

REPORT


Black hole dynamics in power-law based metric f (R) gravity Suraj Kumar Pati1 · Bibekananda Nayak1

· Lambodar Prasad Singh2

Received: 19 May 2020 / Accepted: 8 August 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric f (R) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly 1020 gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric f (R) gravity is 1012 M , where M represents the solar mass. Keywords f (R) Gravity · Starobinsky Model · Accelerated Expansion · Black Hole

Contents 1 2 3 4 5

Introduction . . . . . . . . . . . . . . . . . . Basic framework . . . . . . . . . . . . . . . . Starobinsky model and power-law cosmology . Deceleration parameter . . . . . . . . . . . . Evolution of black holes . . . . . . . . . . . . 5.1 Radiation-dominated era . . . . . . . . . 5.2 Matter dominated era . . . . . . . . . . .

B

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

Bibekananda Nayak [email protected] Suraj Kumar Pati [email protected] Lambodar Prasad Singh [email protected]

1

P.G. Department of Applied Physics and Ballistics, Fakir Mohan University, Balasore, Odisha 756019, India

2

P.G. Department of Physics, U. N. College of Science and Technology, Adaspur, Cuttack, Odisha 754011, India 0123456789().: V,-vol

123

78

Page 2 of 16

S.K. Pati et al.

6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction The recently observed accelerated expansion of the universe [1,2] has put a challenge for its theoretical understanding. To explain it, two general ways have been used in literature. First way is by introducing a new type of energy having negative pressure called dark energy [3,4] and the other way is by modifying the theory of gravity [5,6]. Essentially, dark energy models modify the energy-momentum tensor associated with the matter filling the universe, i.e. the