Brain-Heart Communication
The tight crosstalk between heart and brain is becoming increasingly recognized as the underlying mutual mechanisms are better identified, having a potential impact for clinical approach. Cardiac control is achieved by means of a three-level hierarchical
- PDF / 462,315 Bytes
- 17 Pages / 504.567 x 720 pts Page_size
- 25 Downloads / 127 Views
Brain-Heart Communication Hardware and Software Strategies Through Nerves and Humoral Factors Alessia Pascale and Stefano Govoni
Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Evidence of Heart-Brain Interactions: The Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 The Signaling Pathways: The Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Reflexes and Modulators: A Complex Network Affecting Cardiac Function . . . . . . The Baroreceptor Reflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adrenaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angiotensin II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Natriuretic Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neurotrophins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 33 34 34 36 37
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Abstract
The tight crosstalk between heart and brain is becoming increasingly recognized as the underlying mutual mechanisms are better identified, having a potential impact for clinical approach. Cardiac control is achieved by means of a three-level hierarchical neuronal network (central nervous system neurons, extracardiac-intrathoracic neurons, and intrinsic cardiac nervous system), where all the components work together to fulfill the
A. Pascale (*) · S. Govoni Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy e-mail: [email protected]; [email protected] © Springer Nature Switzerland AG 2020 S. Govoni et al. (eds.), Brain and Heart Dynamics, https://doi.org/10.1007/978-3-030-28008-6_4
physiological demands. However, each component of this network can undergo pathologic-mediated changes due to the transduction of altered sensory inputs originating from a deteriorating heart. A key role in the maintenance of cardiovascular homeostasis is played by the autonomic nervous system with its sympathetic and parasympa
Data Loading...