Canonical Quantum Cosmology
A complete background-independent quantum theory of gravity is a hard goal to achieve and the formal discussion of any of the proposals in this direction lies beyond the scope of this book. However, in order to understand certain techniques it is often us
- PDF / 1,300,226 Bytes
- 76 Pages / 439.36 x 666.15 pts Page_size
- 75 Downloads / 250 Views
Canonical Quantum Cosmology
Not only is the universe stranger than we imagine, it is stranger than we can imagine. —Sir Arthur Eddington
Contents 10.1
Mini-superspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.1 Classical FLRW Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Wheeler–DeWitt Quantum Cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 de Sitter Solutions and Probability of Inflation. . . . . . . . . . . . . . . . . . . . . . . 10.2.2 Massless Scalar Field and Group Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Quantum Singularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.4 Cosmological Constant and the Multiverse. . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.5 Perturbations and Inflationary Observables. . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Loop Quantum Cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Classical FLRW Variables and Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Quantization and Inverse-Volume Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 Mini-superspace Parametrization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.4 Quantum Hamiltonian Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.5 Models with Curvature or a Cosmological Constant. . . . . . . . . . . . . . . . . 10.3.6 Homogeneous Effective Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.7 Singularity Resolved?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.8 Lattice Refinement: Quantum Corrections Revisited. . . . . . . . . . . . . . . . . 10.3.9 Perturbations and Inflationary Observables. . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.10 Inflation in Other Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.11 Is There a Bounce?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Problems and Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
468 469 471 473 476 480 482 484 489 490 493 495 496 500 501 508 510 516 525 526 528 531
A complete background-independent quantum theory of gravity is a hard goal to achieve and the formal discussion of any of the proposals in this direction lies beyond the scope of this book. However, in order to understand certain techniques it is often usef
Data Loading...