Cognitive Load Theory
Cognitive Load Theory John Sweller, Paul Ayres, Slava Kalyuga Effective instructional design depends on the close study of human cognitive architecture—the processes and structures that allow people to acquire and use knowledge. Without th
- PDF / 72,654 Bytes
- 16 Pages / 439.37 x 666.142 pts Page_size
- 76 Downloads / 219 Views
Series Editors J. Michael Spector, University of Georgia, Athens, GA, USA Susanne P. Lajoie, McGill University, Montreal, Quebec, Canada
For further volumes: http://www.springer.com/series/8640
John Sweller • Paul Ayres • Slava Kalyuga
Cognitive Load Theory
John Sweller University of New South Wales NSW, Australia [email protected]
Slava Kalyuga University of New South Wales NSW, Australia [email protected]
Paul Ayres University of New South Wales NSW, Australia [email protected]
ISBN 978-1-4419-8125-7 e-ISBN 978-1-4419-8126-4 DOI 10.1007/978-1-4419-8126-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011922376 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
Preface
Without knowledge of human cognitive processes, instructional design is blind. In the absence of an appropriate framework to suggest instructional techniques, we are likely to have difficulty explaining why instructional procedures do or do not work. Lacking knowledge of human cognition, we would be left with no overarching structure linking disparate instructional processes and guiding procedures. Unless we can appeal to the manner in which human cognitive structures are organised, known as human cognitive architecture, a rational justification for recommending one instructional procedure over another is unlikely to be available. At best, we would be restricted to using narrow, empirical grounds indicating that particular procedures seem to work. We could say instructional procedure A seems better than procedure B but why it works, the conditions under which it works or how we can make it work even better would be rendered unanswerable and mysterious. In contrast, knowledge of how we learn, think and solve problems – human cognitive architecture – can provide us with a coherent, unifying base that can be used to generate instructional hypotheses and data. That base can explain why some instructional procedures work while others fail. Seemingly disparate, even contradictory data can be explained and reconciled. Most importantly, human cognitive architecture can be used to generate instructional procedures that we otherwise would have considerable difficulty conceiving. The structur
Data Loading...