Completeness Theory for Propositional Logics
Completeness is one of the most important notions in logic and the foundations of mathematics. Many variants of the notion have been de?ned in literature. We shallconcentrateonthesevariants,andaspects,of completenesswhicharede?ned in propositional logic.
- PDF / 1,570,108 Bytes
- 186 Pages / 481.889 x 680.315 pts Page_size
- 42 Downloads / 271 Views
		    eries is devoted to the universal approach to logic and the development of a general theory of logics. It covers topics such as global set-ups for fundamental theorems of logic and frameworks for the study of logics, in particular logical matrices, Kripke structures, combination of logics, categorical logic, abstract proof theory, consequence operators, and algebraic logic. It includes also books with historical and philosophical discussions about the nature and scope of logic. Three types of books will appear in the series: graduate textbooks, research monographs, and volumes with contributed papers.
 
 Witold A. Pogorzelski Piotr Wojtylak
 
 Completeness Theory for Propositional Logics
 
 Birkhäuser Basel · Boston · Berlin
 
 $XWKRUV :LWROG$3RJRU]HOVNL Institute of Mathematics University of Bialystok $NDGHPLFND  %LDO\VWRN  Poland   
 
 
 
 
 
  
 
  
 
 
 
 
 
 3LRWU:RMW\ODN Institute of Mathematics Silesian University %DQNRZD .DWRZLFH Poland HPDLOZRMW\ODN#XVHGXSO
 
 0DWKHPDWLFDO6XEMHFW&ODVVL½FDWLRQ%*
 
 /LEUDU\RI&RQJUHVV&RQWURO1XPEHU
 
 Bibliographic information published by Die Deutsche Bibliothek 'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUD½H GHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQWKH,QWHUQHWDWKWWSGQEGGEGH!
 
 ,6%1%LUNKlXVHU9HUODJ$*%DVHOÀ%RVWRQÀ%HUOLQ 7KLVZRUNLVVXEMHFWWRFRS\ULJKW$OOULJKWVDUHUHVHUYHGZKHWKHUWKHZKROHRUSDUW RIWKHPDWHULDOLVFRQFHUQHGVSHFL½FDOO\WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRI LOOXVWUDWLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFUR½OPVRULQRWKHUZD\VDQG VWRUDJHLQGDWDEDQNV)RUDQ\NLQGRIXVHSHUPLVVLRQRIWKHFRS\ULJKWRZQHUPXVWEH REWDLQHG
 
 %LUNKlXVHU9HUODJ$* Basel · Boston · Berlin 32%R[&+%DVHO6ZLW]HUODQG Part of Springer Science+Business Media 3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&) 3ULQWHGLQ*HUPDQ\ ,6%1
 
 
 
 
 
 
 
 H,6%1
 
 
 
 
 
 
 
 
 
 ZZZELUNKDXVHUFK
 
 
 
 Contents Introduction
 
 vii
 
 1 Basic notions 1.1 Propositional languages . . . . . . . . 1.2 Abstract algebras . . . . . . . . . . . . 1.3 Preliminary lattice-theoretical notions 1.4 Propositional logics . . . . . . . . . . . 1.5 Brief exposition of the most important
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . propositional logics .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 1 1 3 6 19 31
 
 2 Semantic methods in propositional logic 2.1 Preordered sets . . . . . . . . . . . . 2.2 Preordered algebras . . . . . . . . . 2.3 Logical matrices . . . . . . . . . . . 2.4 Adequacy . . . . . . . . . . . . . . . 2.5 Propositional logic and lattice theory
 
 . . . . .
 
 41 41 50 55 63 75
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 3 Completeness of propositional logics 3.1 Generalized completeness . . . . . . . . . 3.2		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	