Complex Multiplication
The small book by Shimura-Taniyama on the subject of complex multiĀ is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curve
- PDF / 11,522,093 Bytes
- 190 Pages / 439.37 x 666.142 pts Page_size
- 20 Downloads / 194 Views
Editors
M. Artin S. S. Chern A. Grothendieck E. Heinz F. Hirzebruch L. Hormander S. Mac Lane W. Magnus C. C. Moore J. K. Moser M. Nagata W. Schmidt D. S. Scott J. Tits B. L. van der Waerden Managing Editors
M. Berger
B. Eckmann
S. R. S. Varadhan
Grundlehren der mathematischen Wissenschaften
206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255.
Andre: Homologie des Algebres Commutatives Donoghue: Monotone Matrix Functions and Analytic Continuation Lacey: The Isometric Theory of Classical Banach Spaces Ringel: Map Color Theorem Gihman/Skorohod: The Theory of Stochastic Processes I Comfort/Negrepontis: The Theory of Ultrafilters Switzer: Algebraic Topology-Homotopy and Homology Shafarevich: Basic Algebraic Geometry van der Waerden: Group Theory and Quantum Mechanics Schaefer: Banach Lattices and Positive Operators P6Iya/Szego: Problems and Theorems in Analysis II Stenstrom: Rings of Quotients Gihman/Skorohod: The Theory of Stochastic Process II Duvant/Lions: Inequalities in Mechanics and Physics Kirillov: Elements of the Theory of Representations Mumford: Algebraic Geometry I: Complex Projective Varieties Lang: Introduction to Modular Forms Bergh/Lofstrom: Interpolation Spaces. An Introduction Gilbarg/Trudinger: Elliptic Partial Differential Equations of Second Order Schiitte: Proof Theory Karoubi: K-Theory, An Introduction Grauert/Remmert: Theorie der Steinschen Riiume Segal/Kunze: Integrals and Operators Hasse: Number Theory Klingenberg: Lectures on Closed Geodesics Lang: Elliptic Curves: Diophantine Analysis Gihman/Skorohod: The Theory of Stochastic Processes III Stroock/Varadhan: Multi-dimensional Diffusion Processes Aigner: Combinatorial Theory Dynkin/Yushkevich: Markov Control Processes and Their Applications Grauert/Remmert: Theory of Stein Spaces Kothe: Topological Vector-Spaces II Graham/McGehee: Essays in Commutative Harmonic Analysis Elliott: Probabilistic Number Theory I Elliott: Probabilistic Number Theory II Rudin: Function Theory in the Unit Ball of c:' Blackburn/Huppert: Finite Groups I Blackburn/Huppert: Finite Groups II Kubert/Lang: Modular Units Cornfeld/Fomin/Sinai: Ergodic Theory Naimark: Theory 6f Group Representations Suzuki: Group.Theory I Suzuki: Group Theory II Chung: Lectures from Markov Processes to Brownian Motion Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations Chow/Hale: Methods of Bifurcation Theory Aubin: Nonlinear Analysis on Manifolds, Monge-Ampere Equations Dwork: Lectures onp-adic Differential Equations Freitag: Siegelsche Modulfunktionen Lang: Complex Multiplication
Serge Lang
Complex Multiplication
Springer-Verlag New York Berlin Heidelberg Tokyo
Serge Lang Department of Mathematics Yale University New Haven, CT 06520 U.S.A.
AMS Subject Classifications:
10025, 14K22
Library of Congress Cataloging in Publication Data Lang, Serge, 1927Complex mu
Data Loading...