Computational Linguistics and Talking Robots Processing Content in D
The practical task of building a talking robot requires a theory of how natural language communication works. Conversely, the best way to computationally verify a theory of natural language communication is to demonstrate its functioning concretely in the
- PDF / 4,525,997 Bytes
- 287 Pages / 439.37 x 666.142 pts Page_size
- 94 Downloads / 183 Views
Roland Hausser
Computational Linguistics and Talking Robots Processing Content in Database Semantics
Prof. Dr. Roland Hausser Friedrich-Alexander-Universität Erlangen-Nürnberg Abteilung für Computerlinguistik Bismarckstraße 12 91054 Erlangen Germany [email protected]
ISBN 978-3-642-22431-7 e-ISBN 978-3-642-22432-4 DOI 10.1007/978-3-642-22432-4 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011935426 ACM Codes: I.2.7, H.5.2, I.2.9, I.2.1 © Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the materia l is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover photo: Sphinx by Jakob C. Schletterer (1699–1774) Kloster Altenburg, 1735 Niederösterreich © Julia Liekenbrock 2011 Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
Preface
The practical task of building a talking robot requires a theory of how natural language communication works. Conversely, the best way to computationally verify a theory of free natural language communication is by demonstrating its functioning concretely in the form of a talking robot as the epitome of humanmachine communication. To build an actual robot requires hardware which provides recognition and action interfaces appropriate for this task – like those of C3PO, the bronzy protocol robot in the Star Wars movies. Because such a hardware is presently hard to come by, our method is theoretical: we present an artificial cognitive agent with language as a software system called Database Semantics (DBS). DBS complements work in robotics which does include the interface hardware for reconstructing the sensorimotor loop. For example, Roy (2003, 2008) has been working on an actual robot with language, called Ripley.1 Ripley and the DBS system have in common that they are grounded. This is because both approaches are agent-oriented, in contradistinction to Phrase Structure Grammar and Truth-Conditional Semantics, which are sign-oriented. Unlike the fictional C3PO, the real Ripley consists of a robotic arm mounted on a table.2 Attached to the arm is a hand, a video camera, a microphone, and a loudspeaker. To manage the difficulties of building a robot as a hardware machine, Ripley is focused
Data Loading...