Congenital myasthenic syndromes

  • PDF / 1,052,351 Bytes
  • 22 Pages / 595.276 x 790.866 pts Page_size
  • 63 Downloads / 145 Views

DOWNLOAD

REPORT


(2019) 14:57

REVIEW

Open Access

Congenital myasthenic syndromes Josef Finsterer

Abstract Objectives: Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. Methods: Systematic literature review. Results: Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. Conclusions: CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction. Keywords: Myasthenic syndrome, Myasthenia, Repetitive nerve stimulation, Fatigue, Weakness, Hereditary, Genes, Mutation

Introduction Congenital myasthenic syndromes (CMS) are a heterogeneous group of early-onset genetic neuromuscular transmission disorders due to mutations in proteins involved in the organisation, maintenance, function, or modification of the motor endplate (endplate myopathies) [1, 2] (Fig. 1). CMS are clinically characterised by abnormal fatigability, or transient or permanent weakness of extra-ocular, facial, bulbar, truncal, respiratory, or limb muscles. Onset of endplate myopathy is intrauterine, congenital, in infancy, or childhood, and rarely in adolescence. Severity ranges from mild, phasic weakness, to disabling, permanent muscle weakness, respiratory insufficiency, and early death. All subtypes of CMS share the clinical features of fatigability and muscle Correspondence: [email protected] Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180 Vienna, Austria

weakness, but age of onset, presenting symptoms, and response to treatment vary depending on the molecular mechanism that results from the underlying genetic defect. The term CMS is misleading since not all CMS are congenital.