Creep behavior of Ni-W solid solutions
- PDF / 214,358 Bytes
- 2 Pages / 612 x 792 pts (letter) Page_size
- 109 Downloads / 318 Views
		    3OO
 
 Creep Behavior of Ni-W Solid Solutions
 
 I
 
 I
 
 I N i - W OllOys
 
 250
 
 2CE
 
 F A R G H A L L I A. MOHAMED AND T E R E N C E G. LANGDON
 
 E u
 
 15C
 
 The c r e e p b e h a v i o r of s o li d solution a l l o y s g e n e r a l l y f a i l s into one of two p o s s i b l e c l a s s e s . Using the d e f i n i t i on s i n t r o d u c e d e l s e w h e r e , ~ c l a s s I a l l o y s exhibit s t e a d y - s t a t e c r e e p r a t e s which v a r y with s t r e s s r a i s e d to a p o w e r c l o s e to 5, w h e r e a s in c l a s s 1"[ a l l o y s the s t r e s s exponent f o r s t e a d y - s t a t e c r e e p is c l o s e to 3. By m a k i n g a s s u m p t i o n s c o n c e r n i n g the n a t u r e of the r a t e - c o n t r o l l i n g d e f o r m a t i o n m e c h a n i s m s in the two alloy c l a s s e s , a c r i t e r i o n was r e c e n t l y d e v e l o p e d to d i s t i n g u i s h b e t w e e n c l a s s I and c l a s s II b e h a v i o r . ~ The o b j e c t of the p r e s e n t c o m m u n i c a t i o n is t w o - f o l d : 1) To apply t h i s c r i t e r i o n to the t h r e e i n v e s t i g a t i o n s r e p o r t e d to date f o r c r e e p of N i - W s o l i d s o l u t i o n s , 2-4 and 2) To e x a m i n e the s u g g e s t i o n , m a d e r e c e n t l y by Oikawa and K a r a s h t m a , 5 that a s t r e s s exponent of 3 is not a s u f f i c i en t c r i t e r i o n to identify c l a s s II b e h a v i o r . F o l l o w i n g the a n a l y s i s p r e s e n t e d e l s e w h e r e , ~ it is a s s u m e d that the m e c h a n i s m of c r e e p in c l a s s I alloys is a d i s l o c a t i o n c l i m b p r o c e s s , and the m e c h a n i s m in c l a s s II a l l o y s is v i s c o u s glide c o n t r o l l e d by the p r e s ence of s o l u t e atom a t m o s p h e r e s . The c r i t e r i o n f o r an a l l o y to exhibit c l a s s II b e h a v i o r is then g i v e n by 1
 
 IOO
 
 50
 
 o
 
 Dc
 
 :
 
 DADB (XAD ~ + X B D ~ 4 ) f
 
 [2]
 
 w h e r e D~ and D ~ a r e the t r a c e r d i f f u s i v i t i e s of the A and B a t o m s in the A B alloy, X A and X B a r e the r e s p e c t i v e a t o m i c f r a c t i o n s , and f is a c o r r e l a t i o n f a c t o r c l o s e to 1. F o r glide, Dg is g iv e n by the D a r k e n c h e m i c a l i n t e r d i f f u s i v i t y , 8 defined as
 
 81n f A a
 
 lnX A
 
 w h e r e f A is the a c t i v i t y c o e f f i c i e n t f o r the A s p e c i e s and (8 In f A / ~ l n X A ) -~ 0 f o r dilute s o l i d solutions. FARGHALLI A. MOHAMEDand TERENCE G. LANGDON are Research Associate and Associate Professor, respectively, Department of Materials Science, University of Southern California, Los Angeles, California 90007. Manuscript submitted June 17, 1974. METALLURGICAL TRANSACTIONS A
 
 I
 
 I
 
 20
 
 30
 
 wt%W
 
 Fig. 1--The variation of stacking fault energy with solute concentration in Ni-W alloys9 107
 
 I
 
 l
 
 '
 
 '
 
 .....
 
 '1
 
 I ~
 
 CLIMB
 
 106 --
 
 /
 
 GLIDE
 
 Ni-2 wl ~~IW
 
 o
 
 ~-- ~ - - ~ Ni_5 wl %W r IO5
 
 F--/
 
 ~.o o o%j
 
 w h e r e B ~ 8 • 10 ~z, e is the applied s t r e s s ,		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	