Creep behavior of Ni-W solid solutions

  • PDF / 214,358 Bytes
  • 2 Pages / 612 x 792 pts (letter) Page_size
  • 109 Downloads / 270 Views

DOWNLOAD

REPORT


3OO

Creep Behavior of Ni-W Solid Solutions

I

I

I N i - W OllOys

250

2CE

F A R G H A L L I A. MOHAMED AND T E R E N C E G. LANGDON

E u

15C

The c r e e p b e h a v i o r of s o li d solution a l l o y s g e n e r a l l y f a i l s into one of two p o s s i b l e c l a s s e s . Using the d e f i n i t i on s i n t r o d u c e d e l s e w h e r e , ~ c l a s s I a l l o y s exhibit s t e a d y - s t a t e c r e e p r a t e s which v a r y with s t r e s s r a i s e d to a p o w e r c l o s e to 5, w h e r e a s in c l a s s 1"[ a l l o y s the s t r e s s exponent f o r s t e a d y - s t a t e c r e e p is c l o s e to 3. By m a k i n g a s s u m p t i o n s c o n c e r n i n g the n a t u r e of the r a t e - c o n t r o l l i n g d e f o r m a t i o n m e c h a n i s m s in the two alloy c l a s s e s , a c r i t e r i o n was r e c e n t l y d e v e l o p e d to d i s t i n g u i s h b e t w e e n c l a s s I and c l a s s II b e h a v i o r . ~ The o b j e c t of the p r e s e n t c o m m u n i c a t i o n is t w o - f o l d : 1) To apply t h i s c r i t e r i o n to the t h r e e i n v e s t i g a t i o n s r e p o r t e d to date f o r c r e e p of N i - W s o l i d s o l u t i o n s , 2-4 and 2) To e x a m i n e the s u g g e s t i o n , m a d e r e c e n t l y by Oikawa and K a r a s h t m a , 5 that a s t r e s s exponent of 3 is not a s u f f i c i en t c r i t e r i o n to identify c l a s s II b e h a v i o r . F o l l o w i n g the a n a l y s i s p r e s e n t e d e l s e w h e r e , ~ it is a s s u m e d that the m e c h a n i s m of c r e e p in c l a s s I alloys is a d i s l o c a t i o n c l i m b p r o c e s s , and the m e c h a n i s m in c l a s s II a l l o y s is v i s c o u s glide c o n t r o l l e d by the p r e s ence of s o l u t e atom a t m o s p h e r e s . The c r i t e r i o n f o r an a l l o y to exhibit c l a s s II b e h a v i o r is then g i v e n by 1

IOO

50

o

Dc

:

DADB (XAD ~ + X B D ~ 4 ) f

[2]

w h e r e D~ and D ~ a r e the t r a c e r d i f f u s i v i t i e s of the A and B a t o m s in the A B alloy, X A and X B a r e the r e s p e c t i v e a t o m i c f r a c t i o n s , and f is a c o r r e l a t i o n f a c t o r c l o s e to 1. F o r glide, Dg is g iv e n by the D a r k e n c h e m i c a l i n t e r d i f f u s i v i t y , 8 defined as

81n f A a

lnX A

w h e r e f A is the a c t i v i t y c o e f f i c i e n t f o r the A s p e c i e s and (8 In f A / ~ l n X A ) -~ 0 f o r dilute s o l i d solutions. FARGHALLI A. MOHAMEDand TERENCE G. LANGDON are Research Associate and Associate Professor, respectively, Department of Materials Science, University of Southern California, Los Angeles, California 90007. Manuscript submitted June 17, 1974. METALLURGICAL TRANSACTIONS A

I

I

20

30

wt%W

Fig. 1--The variation of stacking fault energy with solute concentration in Ni-W alloys9 107

I

l

'

'

.....

'1

I ~

CLIMB

106 --

/

GLIDE

Ni-2 wl ~~IW

o

~-- ~ - - ~ Ni_5 wl %W r IO5

F--/

~.o o o%j

w h e r e B ~ 8 • 10 ~z, e is the applied s t r e s s ,