Deformation and annealing response of td-nickel chromium

  • PDF / 1,135,987 Bytes
  • 3 Pages / 612 x 792 pts (letter) Page_size
  • 36 Downloads / 180 Views

DOWNLOAD

REPORT


1. P. Cotterill:Progr.Mater. Sci., 1961,voL9, no. 4, pp. 205-391. 2. A. S. Tetelmanand A. J. McEvily,Jr.: Fractureof StructuralMaterials, Wiley, NewYork, 1967. 3. I. M. Bernstein:Mater. Sci. Eng., 1970,voL6, pp. 1-19. 4. W.Beck,E. J. Jankowsky,and P. Fisher:HydrogenStress Crackingof High Strength Steels, NADC-MA-7140,NavalAir DevelopmentCenter,1971. 5. HydrogenErnbrittlement Testing, ASTMSTP 543, AmericanSocietyfor TestingMaterials,Philadelphia,1974. 6. G. Scheven,G. Sachs,and K. Tong:Proc.ASTM, 1957,vol. 57, pp. 682-97. 7. W.Beck:Electrocherr~ Technot., 1964,vol. 2, pp. 74-78. 8. J. D. Harrisonand G. C. Smith:Brit. Weld.J., 1967,voL 14, pp. 493-502. 9. W.A. Spitzig,P. M. Talda,and R. P. Wei:Eng. Frac.Mech., 1968,voL 1, pp. 155-65. 10. A. Troiano:Trans.ASM, 1960,vol.52, pp. 52-80. 11. Electron FractographyHandbook, ML-TDR-64-416,AFMLTech.Report, Air ForceMaterialsLab., 1965. Fig. 7--SEM micrograph of fatigue zone of unembrittled HY130 steel.

Deformation and Annealing Response of TD-Nickel Chromium R. D. K A N E A N D L. J. E B E R T In r e c e n t y e a r s m u c h has b e e n l e a r n e d of the r e c r y s t a l l i z a t i o n and g r a i n growth b e h a v i o r of T D Nickel. However, it was not known w h e t h e r the unique d e f o r m a t i o n and a n n e a l i n g r e s p o n s e l'e which made TDNickel a v e r y u n u s u a l alloy is also c h a r a c t e r i s t i c of T D - N i c k e l C h r o m i u m ( T D - N i C r ) . In the p r e s e n t study, the r e c r y s t a l l i z a t i o n and g r a i n growth p r o c e s s e s o c c u r r i n g in T D - N i C r w e r e e x a m i n e d with r e s p e c t to d e f o r m a t i o n s e v e r i t y , a n n e a l i n g t i m e and t e m p e r a t u r e . F i g s . 1 and 2 show the effects of the a m o u n t of cold r o l l i n g and its d i r e c t i o n on the g r a i n s i z e of T D - N i C r following a n n e a l i n g . G r a i n size was d e t e r m i n e d in t e r m s of a v e r a g e g r a i n d i m e n s i o n (AGD) given by the following equation, s Fig. 8--SEM micrograph of fatigue zone showing fatigue s t r i ations associated with secondary crackings in hydrogen-embrittled HY-130 steel.

AGD = 0.844 ( L r L r t Ltt)i/3 w h e r e L r , L r t and ['tt a r e the a v e r a g e g r a i n lengths in the r o l l i n g d i r e c t i o n , r o l l i n g plane t r a n s v e r s e d i r e c t i o n and the t h i c k n e s s p l a n e t r a n s v e r s e d i r e c t i o n , r e s p e c t i v e l y . S t a r t i n g m a t e r i a l s c o n s i s t e d of 1) Mat e r i a l A, the a s - r e c e i v e d 0.1 in. thick s h e e t in the u n a n n e a l e d condition supplied by F a n s t e e l Company and 2) M a t e r i a l B, M a t e r i a l A following a n n e a l i n g for 1 h at 1316~ (2400~ In all c a s e s , t r a n s v e r s e and l o n g i t u d i n a l cold r o l l i n g (with r e s p e c t to the a s - r e c e i v e d

c r o s s h e a d speed of 0.005 i n . / m i n was p r i n c i p a l l y d i m p l e r u p t u r e . L o n g i t u d i n a l m i c r o c r