Design, Modeling and Characterization of Bio-Nanorobotic Systems

Nanorobots represent a nanoscale device where proteins such as DNA, carbon nanotubes could act as motors, mechanical joints, transmission elements, or sensors. When these different components were assembled together they can form nanorobots with multi-deg

  • PDF / 13,100,201 Bytes
  • 178 Pages / 439.37 x 666.142 pts Page_size
  • 40 Downloads / 184 Views

DOWNLOAD

REPORT


Mustapha Hamdi  Antoine Ferreira

Design, Modeling and Characterization of Bio-Nanorobotic Systems

Dr. Mustapha Hamdi Institut PRISME ENSI Bourges 88 Boulevard Lahitolle 18020 Bourges France [email protected]

Dr. Antoine Ferreira Institut PRISME ENSI Bourges 88 Boulevard Lahitolle 18020 Bourges France [email protected]

ISBN 978-90-481-3179-2 e-ISBN 978-90-481-3180-8 DOI 10.1007/978-90-481-3180-8 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010937677 © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: eStudio Calamar S.L. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

To my family, on whose constant encouragement and love I have relied throughout my time at the Academy. I am grateful also to the examples of my brother, It is to them that I dedicate this work.

Acknowledgements

I would like to thank Prof. Y. Touré for giving me opportunities to make the most out of my thesis years in the PRISME institute. I would like to thank Prof. A. Ferreira my thesis advisor for his scientific guiding and suggestions through the thesis work. It is a pleasure to thank the reviewers of my thesis: Prof. B. Courtois and Prof. S. Fatikow for their detailed reports on this thesis. The quality of the manuscript is definitively improved thanks to their comments. My sincere gratitude also goes to the rest of my thesis committee: Prof. B. Nelson and Prof. A. Voda. A special thank and appreciation to Professor Constantinos Mavroidis, Professor Director of the Biomedical Mechatronics Laboratory Department of Mechanical and Industrial Engineering, for his scientific guiding and suggestions during the fruitful collaboration about Bio-nanodevices prototyping and characterization. It is difficult to overstate my appreciation to Prof. Bradley Nelson, supervisor of the Multi-Scale Robotics Laboratory in the ETH of Zurich with whom I began to learn about experimentation and fabrication of carbon nanotubes based nanodevices. Not only a great mentor, he has also been a cornerstone in my professional development. I have also to thank the Multi-Scale Robotics Laboratory team: Dr. Lixin dong, Dr. Arun Subramanian and Ph.D. student Kaiyu Shou. People in my institute helped me during my scientific explorations. I feel privileged to thank all of them and particularly the following researchers for both their insightful comments and the enjoyable discussions: A. Ben Ali and V. Idasiak. Of course, this research would not have been possible without the financial support of the FSE and the Region of Cher. For these I would like to acknowledg