Direct Write Technologies

The term “Direct Write” (DW) in its broadest sense can mean any technology which can create two- or three-dimensional functional structures directly onto flat or conformal surfaces in complex shapes, without any tooling or masks [1]. Although beam deposit

  • PDF / 683,402 Bytes
  • 24 Pages / 439.37 x 666.142 pts Page_size
  • 80 Downloads / 193 Views

DOWNLOAD

REPORT


Direct Write Technologies

10.1

Direct Write Technologies

The term “Direct Write” (DW) in its broadest sense can mean any technology which can create two- or three-dimensional functional structures directly onto flat or conformal surfaces in complex shapes, without any tooling or masks [1]. Although beam deposition, direct printing, extrusion-based and other AM processes fit this definition; for the purposes of distinguishing between the technologies discussed in this chapter and the technologies discussed elsewhere in this book, we will limit our definition of DW to those technologies which are designed to build freeform structures in dimensions of 5 mm or less, with feature resolution in one or more dimensions below 50 mm. This “small-scale” interpretation is how the term direct write is typically understood in the additive manufacturing community. Thus, for the purposes of this chapter, DW technologies are those processes which create meso, micro, and nano-scale structures using a freeform deposition tool. Although freeform surface modification using lasers and other treatments in some cases can be referred to as direct write [2] we will only discuss those technologies which add material to a surface. A more complete treatment of direct write technologies can be found in books dedicated to this topic [3].

10.2

Background

Although the initial use of some DW technologies predate the advent of AM, the development of DW technologies was dramatically accelerated in the 1990s by funding from the U.S. Defense Advanced Research Projects Agency (DARPA) and its Mesoscopic Integrated Conformal Electronics (MICE) program. DARPA recognized the potential for creating novel components and devices if material deposition technologies could be further developed to enable manufacture of complex electronic circuitry and mesoscale devices onto or within flexible or complex threedimensional objects. Many different DW technologies were developed or improved I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, DOI 10.1007/978-1-4419-1120-9_10, # Springer ScienceþBusiness Media, LLC 2010

259

260

10 Direct Write Technologies

following funding from DARPA, including Matrix-Assisted Pulsed Laser Evaporation (MAPLE), nScrypt 3De, Maskless Mesoscale Materials Deposition (M3D, now known as Aerosol Jet), and Direct Write Thermal Spraying. As a result, most people have come to consider DW technologies as those devices which are designed to write or print passive or active electronic components (conductors, insulators, batteries, capacitors, antennas, etc.) directly from a computer file without any tooling or masks. However, DW devices have found broad applicability outside the direct production of circuitry and are now used to fabricate structures with tailored thermal, electrical, chemical, and biological responses, among other applications. DW processes can be subdivided into five categories, including ink-based, lasertransfer, thermal spray, beam deposition, liquid-phase, and beam tracing processes. Most of th