Discrete Optimization

Discrete optimization problems involve discrete decision variables as shown below in Example 4.1.

  • PDF / 8,996,610 Bytes
  • 379 Pages / 439.43 x 683.15 pts Page_size
  • 66 Downloads / 259 Views

DOWNLOAD

REPORT


Urmila M. Diwekar

Introduction to Applied Optimization Third Edition

Springer Optimization and Its Applications Volume 22

Series Editors Panos M. Pardalos , University of Florida My T. Thai , University of Florida Honorary Editor Ding-Zhu Du, University of Texas at Dallas Advisory Editors Roman V. Belavkin, Middlesex University John R. Birge, University of Chicago Sergiy Butenko, Texas A&M University Vipin Kumar, University of Minnesota Anna Nagurney, University of Massachusetts Amherst Jun Pei, Hefei University of Technology Oleg Prokopyev, University of Pittsburgh Steffen Rebennack, Karlsruhe Institute of Technology Mauricio Resende, Amazon Tam´as Terlaky, Lehigh University Van Vu, Yale University Guoliang Xue, Arizona State University Yinyu Ye, Stanford University

Aims and Scope Optimization has continued to expand in all directions at an astonishing rate. New algorithmic and theoretical techniques are continually developing and the diffusion into other disciplines is proceeding at a rapid pace, with a spot light on machine learning, artificial intelligence, and quantum computing. Our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization has been a basic tool in areas not limited to applied mathematics, engineering, medicine, economics, computer science, operations research, and other sciences. The series Springer Optimization and Its Applications (SOIA) aims to publish state-of-the-art expository works (monographs, contributed volumes, textbooks, handbooks) that focus on theory, methods, and applications of optimization. Topics covered include, but are not limited to, nonlinear optimization, combinatorial optimization, continuous optimization, stochastic optimization, Bayesian optimization, optimal control, discrete optimization, multi-objective optimization, and more. New to the series portfolio include Works at the intersection of optimization and machine learning, artificial intelligence, and quantum computing. Volumes from this series are indexed by Web of Science, zbMATH, Mathematical Reviews, and SCOPUS.

More information about this series at http://www.springer.com/series/7393

Urmila M. Diwekar

Introduction to Applied Optimization Third Edition

Urmila M. Diwekar Vishwamitra Research Institute Crystal Lake, IL, USA

ISSN 1931-6828 ISSN 1931-6836 (electronic) Springer Optimization and Its Applications ISBN 978-3-030-55403-3 ISBN 978-3-030-55404-0 (eBook) https://doi.org/10.1007/978-3-030-55404-0 Mathematics Subject Classification: 80M50, 90C27, 49JXX, 35B50 © Springer Nature Switzerland AG 2003, 2008, 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or informati