Distinguishing inert Higgs doublet and inert triplet scenarios
- PDF / 3,860,820 Bytes
- 31 Pages / 595.276 x 790.866 pts Page_size
- 79 Downloads / 187 Views
Regular Article - Theoretical Physics
Distinguishing inert Higgs doublet and inert triplet scenarios Shilpa Jangida , Priyotosh Bandyopadhyayb Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telengana 502287, India
Received: 2 April 2020 / Accepted: 21 July 2020 © The Author(s) 2020
Abstract In this article we consider a comparative study between Type-I 2HDM and Y = 0, SU (2) triplet extensions having one Z 2 -odd doublet and triplet that render the desired dark matter(DM). For the inert doublet model (IDM) either a neutral scalar or pseudoscalar can be the DM, whereas for inert triplet model (ITM) it is a CP-even scalar. The bounds from perturbativity and vacuum stability are studied for both the scenarios by calculating the two-loop beta functions. While the quartic couplings are restricted to 0.1 − 0.2 for a Planck scale perturbativity for IDM, these are much relaxed (0.8 ) for ITM. The RG-improved potentials by ColemanWeinberg show the regions of stability, meta-stability and instability of the electroweak vacuum. The constraints coming from DM relic, the direct and indirect experiments like XENON1T, LUX and H.E.S.S., Fermi-LAT allow the DM mass 700, 1176 GeV for IDM, ITM respectively. Though mass-splitting among Z 2 -odd particles in IDM is a possibility for ITM we have to rely on loop-corrections. The phenomenological signatures at the LHC show that the monolepton plus missing energy with prompt and displaced decays in the case of IDM and ITM can distinguish such scenarios at the LHC along with other complementary modes.
Contents 1 2 3 4 5 6
Introduction . . . . . . . . . . . . . . . . . . . . . Inert doublet model (IDM) . . . . . . . . . . . . . Inert triplet model (ITM) . . . . . . . . . . . . . . Mass spectrum of IDM and ITM . . . . . . . . . . Perturbativity bound . . . . . . . . . . . . . . . . Stability bound . . . . . . . . . . . . . . . . . . . 6.1 RG evolution of the scalar quartic couplings . 6.2 Vacuum stability from RG-improved potential approach . . . . . . . . . . . . . . . . . . .
a e-mail:
[email protected]
b e-mail:
[email protected] (corresponding author)
0123456789().: V,-vol
. . . . . . . .
6.3 Stable, metastable and unstable regions . . . . . Calculation of relic density in freeze out scenario for IDM and ITM . . . . . . . . . . . . . . . . . . . 8 Constrains from direct dark matter experiments . . . 9 Constraints from H.E.S.S. and Fermi-Lat experiemtns 10 Dependence on the validity scale . . . . . . . . . . . 10.1 Validity till Planck scale . . . . . . . . . . . . . 10.2 Validity till GUT scale . . . . . . . . . . . . . 10.3 Validity till 104 GeV . . . . . . . . . . . . . . 11 LHC phenomenology . . . . . . . . . . . . . . . . . 12 Conclusions . . . . . . . . . . . . . . . . . . . . . . A Two-loop β-functions for IDM . . . . . . . . . . . . . A.1 Scalar quartic couplings . . . . . . . . . . . . . A.2 Gauge couplings . . . . . . . . . . . . . . . . . A.3 Yukawa coupling . . . . . . . . . . . . . . . . . B Two-loop β-functions for ITM . . . . . . . . .
Data Loading...