Effect of oxygen on tungsten filament sag kinetics

  • PDF / 246,099 Bytes
  • 3 Pages / 590.28 x 785 pts Page_size
  • 58 Downloads / 178 Views

DOWNLOAD

REPORT


150 \

FCC 9 9 Ghosh,De a Sen Gupta HCPvo-c- {4- Present work

o< 10,3

2OO

1oo O

2

,-E v

~,

Deft

5O

rather interesting to note from the point of view of free energy relationships. Therefore, from these observations, it may be concluded that the solute content, as well as the phase stability, has a pronounced influence on the defect structures, such that the solute dependence of the different microstructural parameters becomes prominent. Thus, the diminishing effects of all the parameters in the hcp region are possible, as there lies a mixed hcp + bcc (ff + e)phase just after the hcp (#)-phase.

REFERENCES MIXEO

-

-

o~

FCC

~

~o

,~-~,

NCP

-

-

~s

2o

at % of Ge

Fig. 3 - - P l o t s of average (DaJ and effective (Derf) domain sizes vs at. pct of solute Ge for fcc, mixed, and hcp phases.

FCC o HCP tx

-ov

Ghosh, De ~ Sen Gupta 1983 Present work Smallrnan & Westmacott 1957

!j/

(Pure Copper )

4

I

I (a)

I

20 T_ o

"i

15

~

I

1. S.K. Ghosh, M. De, and S.P. Sen Gupta: J. Appl. Phys., 1983, vol. 54, pp. 2073-78. 2. S.P. Sen Gupta and K.N. Goswami: Brit. J. Appl. Phys., 1967, vol. 18, pp. 193-98. 3. B.E. Warren: X-ray Diffraction, Addison-Wesley, Reading, MA, 1969, ch. 13. 4. M. De and S. Sen: Brit. J. Appl. Phys., 1968, Ser. 2, vol. 1, pp. 1141-44. 5. S.K. Chatterjee and S.P. Sen Gupta: J. Mater. Sci., 1974, vol. 9, pp. 953-60. 6. S.K. Chatterjee and S.P. Sen Gupta: J. Mater. Sci., 1975, vol. 10, pp. 1093-104. 7. S. Sen, R.K. Nandi, and S.P. Sen Gupta: Thin Solid Films, 1978, vol. 48, pp. 1-16. 8. E. Chatterjee and S.P. Sen Gupta: Thin Solid Films, 1984, vol. 122, pp. 73-91. 9. S.K. Ghosh and S.P. Sen Gupta: Metall. Trans. A, 1985, vol. 16A, pp. 1427-35. 10. A.R. Stokes: Proc. Phys. Soc. Lond., 1948, vol. B61, pp. 382-91. 1 I. G.K. Williamson and R.E. Smallman: Phil. Mag., 1956, vol. 1, pp. 34-46. 12. R.E. Smallman and K.H. Westmacott: Phil. Mag., 1957, vol. 2, pp. 669-83. 13. L.F. Vassamillet: J. Appl. Phys., 1961, vol. 32, pp. 778-82. 14. D. Hull: Introduction to Dislocation, Pergamon Press, London, 1975, chs. 5 & 6. 15. A.H. Cotla-ell: Dislocation and Plastic Flow in C~stals, Clarendon Press, Oxford, 1933, ch. 7. 16. J.H. Foley, R.W. Cahn, and G.V. Raynor: Acta Metall., 1963, vol. 11, pp. 355-60.

~- lO

FCC

o

~

___

~

L

~

~

9 12 a t '/iof Ge

~

.~

15

1~

o

Fig. 4 - - ( a ) and (b) Plots of dislocation density p and stacking fault energy parameter 3'/# vs at. pct of solute Ge for fcc, mixed, and hcp phases.

vs s o l u t e Ge plot for the three regions (Figure 4(a)), the plot of the parameter y//~ with solute concentration Ge shows a roughly parabolic variation in both the fcc and hcp regions, with a minimum in the proximity o f the mixed (a + ~')-phase region. This variation is consistent with the creation of stacking faults, as is apparent in the plot o f Figure I. There also exists a continuity in the variation of y / / z from fcc to hcp through the hcp component of the narrow mixed-phase region, indicating a smooth transition from the a ~ ~'-phase so far as this parameter is