Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical p

  • PDF / 2,317,139 Bytes
  • 11 Pages / 592.8 x 841.98 pts Page_size
  • 60 Downloads / 239 Views

DOWNLOAD

REPORT


Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel Muhammad Arslan Hafeez 1), Ameeq Farooq 2), Kaab Bin Tayyab 2), and Muhammad Adnan Arshad 2) 1) School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan 2) Department of Metallurgy & Materials Engineering, University of the Punjab, 54590 Lahore, Pakistan (Received: 2 June 2020; revised: 8 July 2020; accepted: 10 July 2020)

Abstract: Thermomechanical cyclic quenching and tempering (TMCT) can strengthen steels through a grain size reduction mechanism. The effect of TMCT on microstructure, mechanical, and electrochemical properties of AISI 1345 steel was investigated. Steel samples heated to 1050°C, rolled, quenched to room temperature, and subjected to various cyclic quenching and tempering heat treatments were named TMCT-1, TMCT-2, and TMCT-3 samples, respectively. Microstructure analysis revealed that microstructures of all the treated samples contained packets and blocks of well-refined lath-shaped martensite and retained austenite phases with varying grain sizes (2.8–7.9 µm). Among all the tested samples, TMCT-3 sample offered an optimum combination of properties by showing an improvement of 40% in tensile strength and reduced 34% elongation compared with the non-treated sample. Nanoindentation results were in good agreement with mechanical tests as the TMCT-3 sample exhibited a 51% improvement in indentation hardness with almost identical reduced elastic modulus compared with the non-treated sample. The electrochemical properties were analyzed in 0.1 M NaHCO3 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. As a result of TMCT, the minimum corrosion rate was 0.272 mm/a, which was twenty times less than that of the nontreated sample. The impedance results showed the barrier film mechanism, which was confirmed by the polarization results as the current density decreased. Keywords:  thermomechanical  treatment;  cyclic  heat-treatment;  nanoindentation;  potentiodynamic  polarization;  electrochemical  impedance spectroscopy

 

1. Introduction Several industrial applications, particularly automotive industries,  are  demanding  economical  steels  with  superior strength,  ductility,  and  impact  toughness  to  manufacture lightweight  structural  components  [1–4].  These  properties can  be  achieved  by  producing  stable  and  ultrafine  grained microstructures [5]. For this purpose, several techniques, i.e., microalloying (of cobalt, copper, and boron in steel composition)  [6],  oxide  dispersion  strengthening  technique  [7–8], high-pressure torsion, equal channel angular pressing, accumulative roll bonding [5,9], controlling initial microstructure, austenitizing  temperature,  and  austenitizing  time  [10],  thermomechanical  treatment  (TMT)  [11], and  cyclic  heat   treatments [12], have been reported. TMT  is  a  well-recognized,  economical,  and  effic

Data Loading...