Effects of the Bi 3+ substitution on the structural, vibrational, and magnetic properties of bismuth layer-structured fe

  • PDF / 2,650,690 Bytes
  • 12 Pages / 595.276 x 790.866 pts Page_size
  • 98 Downloads / 265 Views

DOWNLOAD

REPORT


Effects of the ­Bi3+ substitution on the structural, vibrational, and magnetic properties of bismuth layer‑structured ferroelectrics P. H. T. Silva1 · M. A. S. Silva2 · R. B. da Silva3 · M. A. Correa3 · F. Bohn3 · A. S. de Menezes4 · W. C. Ferreira5 · A. P. Ayala5 · A. S. B. Sombra2 · P. B. A. Fechine1  Received: 14 June 2020 / Accepted: 26 July 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract Bismuth layer-structured ferroelectric B ­ i3R2Ti3FeO15 (R = Bi, Nd, and Gd) ceramics were synthesized by conventional solid-state reaction. All the samples showed an orthorhombic structure with ­A21am space group. ­Bi3Nd2Ti3FeO15 and ­ i5Ti3FeO15. The magnetic susceptibility ­Bi3Gd2Ti3FeO15 presented a reduction in the orthorhombicity when compared to B of all samples followed the Curie–Weiss law, with negative values of the Curie–Weiss temperature, demonstrating that the magnetic interactions are antiferromagnetic in nature. The magnetization curves suggested a weak canted antiferromagnetic behavior for temperatures below 25 K, followed by a linear behavior in the curves at high temperatures. Mössbauer spectroscopy measurements revealed an increase of the quadrupole splitting values as the temperature decreases, indicating that the samples present local distortions, favoring the existence of weak ferromagnetic phase via the antisymmetric Dzyaloshinskii–Moriya interaction. Keywords Bi5ti3FeO15 · Rare earth · Raman spectroscopy · Bismuth-layer-structured-ferroelectric

1  Introduction

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s0033​9-020-03858​-y) contains supplementary material, which is available to authorized users. * P. B. A. Fechine [email protected] 1



Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico‑Química, Universidade Federal do Ceará-UFC, Campus do Pici, CP 12100, Fortaleza, CE CEP 60451‑970, Brazil

2



Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60451‑970, Brazil

3

Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, RN CEP 59078‑900, Brazil

4

Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, Bacanga, São Luís, MA CEP 65080‑805, Brazil

5

Departamento de Física, Universidade Federal do Ceará, Campus do Pici, CP 6030, Fortaleza, CE CEP 65455‑900, Brazil





Over thep 50 years, bismuth layer-structured ferroelectrics (BLSF) have attracted great attention due to their interesting physical properties and broad potential of applications, such as in sensors, electronic devices, memory storage, antennas, and solar cells [1–10]. Generally, BLSF are presented in the form ­(Bi2O2)2+ ­[Am−1BmO3m+1]2−, in which site A can be mono, di or trivalent cations (or a combination of these). Site B generally holds tetravalent, pentavalent, and hexavalent cations, similar ions or combinations [11–13]. The subscript m informs the nu