Einstein Manifolds

From the reviews: "[...] an efficient reference book for many fundamental techniques of Riemannian geometry. [...] despite its length, the reader will have no difficulty in getting the feel of its contents and discovering excellent examples of all interac

  • PDF / 48,175,087 Bytes
  • 523 Pages / 439.37 x 666.142 pts Page_size
  • 10 Downloads / 340 Views

DOWNLOAD

REPORT


Editorial Board

E. Bombieri, Princeton S. Feferman, Stanford N. H. Kuiper, Bures-sur-Yvette P. Lax, New York R. Remmert (Managing Editor), Münster W. Schmid, Cambridge, Mass. J-P. Serre, Paris J. Tits, Paris

Arthur L. Besse

Einstein Manifolds

With 22 Figures

Springer-Verlag Berlin Heidelberg GmbH

Mathematics Subject Classification (1980): 53 C 25, 53 C 55, 53 C 30, 83 C ... 83 E 50

ISBN 978-3-540-74120-6 ISBN 978-3-540-74311-8 (eBook) DOI 10.1007/978-3-540-74311-8 Library ofCongress Cataloging-in-Publication Data Besse, A. L. Einstein manifolds. (Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 10) Bibliography: p. Inc1udes indexes. 1. Einstein manifolds. 2. Relativity (Physics) I. Tide. 11. Series. QA649.B49 530.1'1 86-15411

1987

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concemed, specifically those oftranslation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 ofthe German Copyright Law where copies are made for other than private use a fee is payable to "Verwertungsgesellschaft Wort", Munich. © Springer-Verlag Berlin Heidelberg 1987

Originally published by Springer-Verlag Berlin Heidelberg New York in 1987. Softcover reprint of the hardcover 1st edition 1987 Typesetting: Asco Trade Typesetting, Ltd., Hong Kong 2141/3140-543210

Acknowledgements

Po ur rassembier les elements un peu disparates qui constituent ce livre,j'ai du faire appel a de nombreux amis, heureusement bien plus savants que moi. Ce sont, entre autres, Genevieve Averous, Lionel Berard-Bergery, Marcel Berger, Jean-Pierre Bourguignon, Andrei Derdzinski, Dennis M. DeTurck, Paul Gauduchon, Nigel J. Hitchin, Josette Houillot, Hermann Karcher, Jerry L. Kazdan, Norihito Koiso, Jacques Lafontaine, Pierre Pansu, Albert Polombo, John A. Thorpe, Liane Valere. Les institutions suivantes m'ont prete leur concours materiel, etje les en remercie: l'UER de mathematiques de Paris 7, le Centre de Mathematiques de l'Ecole Polytechnique, Unites Associees du CNRS, l'UER de mathematiques de Chambery et le Conseil General de Savoie. Enfin, qu'il me soit permis de saluer ici mon predecesseur et homonyme Jean Besse, de Zürich, qui s'est illustre dans la theorie des fonctions d'une variable complexe (voir par exemple [Bse]). Votre,

Arthur Besse Le Faux, le 15 septembre 1986

Table of Contents

Chapter O. Introduction .......................................... . A. B. C. D.

Brief Definitions and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Why Write a Book on Einstein Manifolds? . . . . . . . . . . . . . . . . . . . . . . . Existence.................................................... Examples 1. Aigebraic Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Examples from Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Sporadic Examples . . . . . . . . . . . . . . . . . . . . . . . .