Energy-critical elements for sustainable development

  • PDF / 844,189 Bytes
  • 7 Pages / 585 x 783 pts Page_size
  • 30 Downloads / 218 Views

DOWNLOAD

REPORT


Energy-critical elements for sustainable development Alan J. Hurd, Ronald L. Kelley, Roderick G. Eggert, and Min-Ha Lee Energy-critical elements (ECEs) are chemical and isotopic species that are required for emerging sustainable energy sources and that might encounter supply disruptions. An oft-cited example is the rare-earth element neodymium used in high-strength magnets, but elements other than rare earths, for example, helium, are also considered ECEs. The relationships among abundance, markets, and geopolitics that constrain supply are at least as complex as the electronic and nuclear attributes that make ECEs valuable. In an effort to ensure supply for renewable-energy technologies, science decision makers are formulating policies to mitigate supply risk, sometimes without full view of the complexity of important factors, such as unanticipated market responses to policy, society’s needs for these elements in the course of basic research, and a lack of substitutes for utterly unique physical properties. This article places ECEs in historical context, highlights relevant market factors, and reviews policy recommendations made by various studies and governments. Actions taken by the United States and other countries are also described. Although availability and scarcity are related, many ECEs are relatively common yet their supply is at risk. Sustainable development requires informed action and cooperation between governments, industries, and researchers.

Introduction The term “energy-critical elements” (ECEs) was coined by a joint committee of the American Physical Society (APS) and Materials Research Society (MRS) assembled in 2009 to investigate the material resources available to support emerging energy technologies1 (see Figure 1). By the time the APS–MRS study was published in 2011, several countries had already started acting on concerns about the supply risk of critical minerals and materials.2 In the United States, congressional committee hearings, legislation, and administration studies were initiated. The U.S. Department of Energy released an important report in late 20103 and a comprehensive follow-up in late 20114 that identified 14 critical elements: cerium, cobalt, dysprosium, europium, gallium, indium, lanthanum, lithium, neodymium, praseodymium, samarium, tellurium, terbium, and yttrium (see Figure 1). These materials were selected based on supply risk factors, including small global market, lack of supply diversity, and market complexities caused by coproduction and geopolitical risks. The

APS–MRS and Department of Energy reports are foundational to U.S. policy and legislative flow. Also in 2010, Korea and Japan undertook broad programs in research and recycling of rare metals,5 and the European Union (EU) issued memoranda establishing a critical-materials list.6 The sudden concern over ECEs was touched off by international events occurring over at least a decade. As described below, the United States lost its leadership of the rare-earth markets and by 2002 was effectively out of the business. I