Excimer Laser Applications: Polymer Etching and Metal Deposition
- PDF / 1,947,800 Bytes
- 8 Pages / 417.6 x 639 pts Page_size
- 63 Downloads / 193 Views
EXCIMER LASER APPLICATIONS: POLYMER ETCHING AND METAL DEPOSITION MICHAEL RITZ, V. SRINIVASAN*, S. V. BABU, and RAMESH C. PATEL** Department of Chemical Engineering, Clarkson University, Potsdam, NY 13676 *presently at IBM Corporation, Austin, TX **Department of Chemistry, Clarkson University, Potsdam, NY 13676 ABSTRACT polyimide and Excimer laser induced ablative decomposition of 2 It is poly(methylmethacrylate) at high fluences (> 1 J/cm ) is discussed. shown that 0.4 pm sized features can be imaged in polyimide using ArF laser pulses. Preliminary results from experiments in which copper particles ( 1 J/cm2 ) both photochemical and photothermal processes contribute to the ablative photodecomposition of several polymers like polyimide and poly(methlymethacrylate). Feature sizes as small as 0.4 Um have been created in polyimide in a self-developing manner.
Almost
perfectly spherical particles of copper less than one micrometer in size have been deposited on glass substrates by exposing thin films of a copper formate/glycerol paste to KrF laser radiation. The adhesion of these particles to the substrate is excellent. ACKNOWLEDGMENTS This work has been supported in part by NSF grants CBT-8507068 and ECS-
8611298. The authors would like to thank S. Chandrasekhar for help with the SEM photographs of the copper deposits.
I Fig. 4.
'C.
Photograph of a copper deposit at 750X.
The dark areas are voids.
439
--,H-.lpm Fig. 5.
SEM of a copper deposit taken at 5500X.
REFERENCES 1.
R. M. Osgood, Jr., Ann. Rev. Phys. Chem. 34, 77 (1983).
2.
D. J. Ehrlich and J. Y. Tsao, J. Vac. Sci. Technol. B 1, 969 (1983).
3.
T. McGrath, Solid State Technology, 165 (1983).
4.
R. Srinivasan and B. Braren, J. Polym. Sci. (in press).
5.
R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982).
6.
H. H. G. Jellinek and R. Srinivasan, J. Phys. Chem. 88, 3048 (1984).
7.
R." Srinivasan, J. Vac. Sci. Technol. B 1, 923 (1983).
8.
B. J. Garrison and R. Srinivasan, Appl.
9.
G. Gorodetsky, T. G. Kazyaka, R. L. Melcher, and R. Srinivasan, Appl. Phys. Lett. 46, 828 (1985).
Phys. Lett.
44, 849 (1984).
10. B. Braren and R. Srinivasan, J. Vac. Sci. Technol. B 31, 4077 (1985). 11. G. Koren and J. T. C. Yeh, J. Appl. Phys. 56, 2120 (1984). 12. B. Braren and D. Seeger, J. Polym. Sci.
24, 371 (1986).
440
13. F. A. Houle, C. R. Jones, T. Baum, C. Pico, and C. A. Kovac, Appl. Phys. Lett. 46, 204 (1985). 14. C. R. Jones, F. A. Houle, C. A. Kovac,
Appl.
Phys. Lett. 46, 97 (1985).
15. R. J. von Gutfeld, R. E. Acosta, and L. T. Romankiw, IBM J. Res. Develop. 26, 136 (1982). 16. R. J. von Gutfeld and D. R. Vigliotti, Appl. 17. A. Auerbach, Appl.
J. Appl.
Phys. 59, 3861
19. J. H. Brannon, J. R. Lankard, A. I. Baise, and J. Kaufman, Phys. 58, 2036 (1985). 20.
1003 (1985).
Phys. Lett. 47, 669 (1985).
18. V. Srinivasan, M. A. Smrtic, and S. V. Babu,
(1985).
Phys. Lett. 46,
J. Appl.
R. B. Gerassimov, S. M. Metev, S. K. Savtchenko, G. A. Kotov, Veiko, 12th Intl. Quant. Elec. Conf. 206 (1982).
and V. P.
Data Loading...