Extracellular signal-regulated kinase 1/2 is required for complement component C1q and fibronectin dependent enhancement

  • PDF / 1,459,945 Bytes
  • 12 Pages / 595.276 x 790.866 pts Page_size
  • 11 Downloads / 160 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Extracellular signal-regulated kinase 1/2 is required for complement component C1q and fibronectin dependent enhancement of Fcγ- receptor mediated phagocytosis in mouse and human cells Emily A. Willmann1, Vesna Pandurovic1, Anna Jokinen1, Danielle Beckley1 and Suzanne S. Bohlson2*

Abstract Background: C1q is a soluble pattern recognition protein that regulates multiple leukocyte functions, and deficiency in C1q results in autoimmunity. C1q stimulates enhanced phagocytic function through multiple mechanisms including the rapid enhancement of Fcγ receptor (FcγR) -mediated phagocytosis. The molecular mechanism responsible for this rapid enhancement of phagocytic function is unknown. The purpose of this study was to investigate the molecular pathway required for C1q-dependent enhanced phagocytosis. Results: Leukocyte associated immunoglobulin like receptor-1 (LAIR-1) is a receptor that mediates C1q-dependent activation of leukocytes; however, using LAIR-1 deficient mouse bone marrow derived macrophages (BMDM), we demonstrated that LAIR-1 was not required for C1q-dependent enhanced FcγR-mediated phagocytosis. A phosphokinase array identified extracellular signal-regulated kinase (ERK) 1/2 as dysregulated following activation with C1q. Validation of the array in BMDM and the human monocyte cell line THP-1 demonstrated a decrease in basal ERK1/2 phosphorylation in C1q-stimulated cells compared to control cells. However, subsequent stimulation with immune complexes stimulated rapid upregulation of phosphorylation. The extracellular matrix protein fibronectin regulates enhanced phagocytic activity in macrophages similar to C1q, and both C1q and fibronectin-dependent enhanced phagocytosis required ERK1/2 since both were blocked by pharmacologic inhibition of ERK1/2. Furthermore, diminished C1q-dependent ERK1/2 phosphorylation was sustained after four-hour treatment with lipopolysaccharide and correlated with a significant reduction in TNFα production. Conclusions: These data demonstrate that C1q and fibronectin utilize a similar ERK1/2-dependent mechanism for enhanced phagocytosis, which should lead to development of novel approaches to modulate C1q-dependent regulation of macrophage activation, inflammation and autoimmunity. Keywords: C1q, Complement, Fibronectin, Phagocytosis, ERK1/2, Fcγ-receptor, TNFα

* Correspondence: [email protected] 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indica