Extracting medication information from unstructured public health data: a demonstration on data from population-based an

  • PDF / 1,902,885 Bytes
  • 11 Pages / 595.276 x 790.866 pts Page_size
  • 37 Downloads / 202 Views

DOWNLOAD

REPORT


(2020) 20:258

RESEARCH ARTICLE

Open Access

Extracting medication information from unstructured public health data: a demonstration on data from populationbased and tertiary-based samples Robert Chen1,2, Joyce C. Ho1,3 and Jin-Mann S. Lin1*

Abstract Background: Unstructured data from clinical epidemiological studies can be valuable and easy to obtain. However, it requires further extraction and processing for data analysis. Doing this manually is labor-intensive, slow and subject to error. In this study, we propose an automation framework for extracting and processing unstructured data. Methods: The proposed automation framework consisted of two natural language processing (NLP) based tools for unstructured text data for medications and reasons for medication use. We first checked spelling using a spell-check program trained on publicly available knowledge sources and then applied NLP techniques. We mapped medication names into generic names using vocabulary from publicly available knowledge sources. We used WHO’s Anatomical Therapeutic Chemical (ATC) classification system to map generic medication names to medication classes. We processed the reasons for medication with the Lancaster stemmer method and then grouped and mapped to disease classes based on organ systems. Finally, we demonstrated this automation framework on two data sources for Mylagic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): tertiary-based (n = 378) and population-based (n = 664) samples. Results: A total of 8681 raw medication records were used for this demonstration. The 1266 distinct medication names (omitting supplements) were condensed to 89 ATC classification system categories. The 1432 distinct raw reasons for medication use were condensed to 65 categories via NLP. Compared to completion of the entire process manually, our automation process reduced the number of the terms requiring manual labor for mapping by 84.4% for medications and 59.4% for reasons for medication use. Additionally, this process improved the precision of the mapped results. (Continued on next page)

* Correspondence: [email protected] 1 Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Mailstop H24-12, Atlanta, GA 30329, USA Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons