Formal Category Theory: Adjointness for 2-Categories
- PDF / 8,909,351 Bytes
- 294 Pages / 439.37 x 666.14 pts Page_size
- 115 Downloads / 257 Views
		    re Notes in Mathematics Edited by A Dold, Heidelberg and B. Eckmann, Zurich
 
 391 John W. Gray University of Illinois at Urbana-Champaign, Urbana, II/USA
 
 Formal Category Theory: Adjointness for 2-Categories
 
 Springer-Verlag Berlin· Heidelberg· NewYork 1974
 
 AMS Subject Classifications (1970): Primary: 18005, 18025 Secondary: 18A25, 18A40 ISBN 3-540-06830-9 Springer-Verlag Berlin· Heidelberg· New York ISBN 0-387-06830-9 Springer-Verlag New York· Heidelberg· Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under§ 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin · Heidelberg 197 4. Library of Congress Catalog Card Number 74·791 0. Printed in Germany. Offsetdruck: Julius Beltz, Hemsbach/Bergstr.
 
 Contents
 
 Introduction !,1
 
 Categories Yoneda
 
 !,2
 
 !,3
 
 11
 
 Adjointness.
 
 12
 
 Fibrations.
 
 12
 
 Adjoint Functor Theorem.
 
 13
 
 Kan ex tens ions.
 
 14
 
 2-Categories.
 
 16
 
 2-functors .
 
 20
 
 Cat-natural transformations
 
 22
 
 Quasi-natural transformations.
 
 25
 
 Modifications ..
 
 28
 
 2-comma category.
 
 29
 
 3-category.
 
 31
 
 3-comma category
 
 32
 
 double category ..
 
 33
 
 2-and 3-categorical fibrations.
 
 35
 
 Bicategories.
 
 38
 
 Pseudo-functors.
 
 40
 
 Quasi-natural transformations.
 
 43
 
 Examples.
 
 45
 
 Biro
 
 45
 
 Spans
 
 46
 
 x.
 
 46
 
 Birr. {B). Biro (Spans Fibrations.
 
 x.l.
 
 48 50
 
 IV I,4
 
 Properties of Fun(A,B} and Pseud (A,B).
 
 55
 
 Quasi-functor of two variables
 
 56
 
 Characterization of Fun(A,B)
 
 59
 
 Composition quasi-functor
 
 67
 
 Quasi-functor of n-variables
 
 69
 
 Tensor product
 
 73
 
 Quasid-natural transformations
 
 80
 
 Quasi -functor.
 
 81
 
 Monoidal closed category structure
 
 83
 
 Pseud
 
 86
 
 X
 
 (A, B)
 
 Appendix li· Universal copseudo-functor.
 
 I,5
 
 Appendix
 
 ~.Iso-Fun
 
 Appendix
 
 ~.categories
 
 enriched in 2-Cat
 
 92 95 0
 
 Properties of 2-comma categories
 
 101
 
 Universal property.
 
 103
 
 Composition
 
 106
 
 Explicit formulas. Functors over
 
 v1
 
 x
 
 111
 
 v2
 
 Fibration and monoid properties.
 
 I,6
 
 96
 
 115
 
 Homomorphism properties
 
 120 124
 
 Examples
 
 134
 
 Adjoint morphisms in 2-categories
 
 136
 
 Examples
 
 137
 
 Uniqueness, composition and preservation Adjoint Squares
 
 139 144
 
 Examples.
 
 152
 
 Kan extensions
 
 154
 
 Examples
 
 156
 
 Formal criterion for adjoint
 
 158
 
 Cocompleteness.
 
 160
 
 Interchange of limits.
 
 161
 
 Final
 
 163
 
 v I,7
 
 Quasi-adjointness
 
 166
 
 Definitions.
 
 168
 
 Uniqueness, composition and preservation.
 
 169
 
 Transcendental quasi-adjunction.
 
 177
 
 Universal mapping properties.
 
 180
 
 Examples.
 
 187
 
 Some general principles.
 
 187
 
 Some Fini.te quasi-limits.
 
 197
 
 Quasi-colimits in Cat.
 
 201
 
 Quasi-limits in Cat.
 
 217
 
 Quasi-fibrations.
 
 224
 
 Quasi-Kan extensions.
 
 237
 
 The Categorical Comprehension Scheme The Quasi-Yoneda Lemma .
 
 244 251
 
 Globa		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	