Fourier Series
Principles of Fourier series go back to ancient times. The attempts of the Pythagorean school to explain musical harmony in terms of whole numbers embrace early elements of a trigonometric nature. The theory of epicycles in the Almagest of Ptolemy, based
- PDF / 6,912,034 Bytes
- 647 Pages / 439.43 x 683.15 pts Page_size
- 3 Downloads / 210 Views
Loukas Grafakos
Classical Fourier Analysis Third Edition
Graduate Texts in Mathematics
249
Graduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA
Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA
Graduate Texts in Mathematics bridge the gap between passive study and creative understanding, offering graduate-level introductions to advanced topics in mathematics. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. Although these books are frequently used as textbooks in graduate courses, they are also suitable for individual study.
For further volumes: http://www.springer.com/series/136
Loukas Grafakos
Classical Fourier Analysis Third Edition
123
Loukas Grafakos Department of Mathematics University of Missouri Columbia, MO, USA
ISSN 0072-5285 ISSN 2197-5612 (electronic) ISBN 978-1-4939-1193-6 ISBN 978-1-4939-1194-3 (eBook) DOI 10.1007/978-1-4939-1194-3 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014946585 Mathematics Subject Classification (2010): 42Axx, 42Bxx © Springer Science+Business Media New York 2000, 2008, 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence
Data Loading...