Functional Analysis, Sobolev Spaces and Partial Differential Equations
Uniquely, this book presents a coherent, concise and unified way of combining elements from two distinct “worlds,” functional analysis (FA) and partial differential equations (PDEs), and is intended for students who have a good background in real analysis
- PDF / 3,599,530 Bytes
- 603 Pages / 439.37 x 666.142 pts Page_size
- 63 Downloads / 310 Views
For other titles in this series, go to www.springer.com/series/223
Haim Brezis
Functional Analysis, Sobolev Spaces and Partial Differential Equations
1C
Haim Brezis Distinguished Professor Department of Mathematics Rutgers University Piscataway, NJ 08854 USA [email protected] and Professeur émérite, Université Pierre et Marie Curie (Paris 6) and Visiting Distinguished Professor at the Technion Editorial board: Sheldon Axler, San Francisco State University Vincenzo Capasso, Università degli Studi di Milano Carles Casacuberta, Universitat de Barcelona Angus MacIntyre, Queen Mary, University of London Kenneth Ribet, University of California, Berkeley Claude Sabbah, CNRS, École Polytechnique Endre Süli, University of Oxford Wojbor Woyczyński, Case Western Reserve University
ISBN 978-0-387-70913-0 e-ISBN 978-0-387-70914-7 DOI 10.1007/978-0-387-70914-7 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938382 Mathematics Subject Classification (2010): 35Rxx, 46Sxx, 47Sxx © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
To Felix Browder, a mentor and close friend, who taught me to enjoy PDEs through the eyes of a functional analyst
Preface
This book has its roots in a course I taught for many years at the University of Paris. It is intended for students who have a good background in real analysis (as expounded, for instance, in the textbooks of G. B. Folland [2], A. W. Knapp [1], and H. L. Royden [1]). I conceived a program mixing elements from two distinct “worlds”: functional analysis (FA) and partial differential equations (PDEs). The first part deals with abstract results in FA and operator theory. The second part concerns the study of spaces of functions (of one or more real variables) having specific differentiability properties: the celebrated Sobolev spaces, which lie at the heart of the modern theory of PDEs. I show how the abstract results from FA can be applied to solve PDEs. The Sobolev spaces occur in a wide range of questions, in both pure and applied mathematics. They appear in linear and nonlinear PDEs that arise, for example, in differential geometry, harmonic analysis, engineering, mechanics, and physics. They belong to the toolbox of any graduate
Data Loading...