Generalized Lorenz-Mie Theories
The Lorenz-Mie theory, describing the interaction between a homogeneous sphere and an electromagnetic plane wave, is likely to be one of the most famous theories in light scattering. But, with the advent of lasers and their increasing development in vario
- PDF / 4,310,961 Bytes
- 336 Pages / 429.725 x 659.895 pts Page_size
- 75 Downloads / 230 Views
Gérard Gouesbet and Gérard Gréhan
Generalized Lorenz-Mie Theories
ABC
Prof. Gérard Gouesbet Université de Rouen CNRS UMR 6614 CORIA Site Universitaire du Madrillet BP 12 76801 ST.-ETIENNE DU ROUVRAY CX France E-mail: [email protected] Prof. Gérard Gréhan Université de Rouen CNRS UMR 6614 CORIA Site Universitaire du Madrillet BP 12 76801 ST.-ETIENNE DU ROUVRAY CX France E-mail: [email protected]
''Additional material to this book can be downloaded from http://extra.springer.com ''
ISBN 978-3-642-17193-2
e-ISBN 978-3-642-17194-9
DOI 10.1007/978-3-642-17194-9 c 2011 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Data supplied by the authors Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India Printed on acid-free paper 987654321 springer.com
Contents
I
Background in Maxwell’s Electromagnetism and Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.1 General Maxwell’s Equations in Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.1.1 Maxwell’s Equations in Free Space . . . . . . . . . I.1.2 Maxwell’s Equations in Matter . . . . . . . . . . . . . I.1.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . I.1.4 Constitutive Relationships . . . . . . . . . . . . . . . . . I.1.5 The Formulation in Fourier Space . . . . . . . . . . I.1.6 Time Harmonic Fields and Complex Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . I.2 Special Maxwell’s Equations for l.l.h.i Media . . . . . . . . . . . I.2.1 Special Maxwell’s Equations in Cartesian Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . I.2.2 Special Maxwell’s Equations in Orthogonal Curvilinear Coordinate Systems . . . . . . . . . . . . I.2.3 Special Maxwell’s Equations in Spherical Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . I.2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . I.2.5 Energy Propagation and Poynting Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.2.6 Momentum Propagation . . . . . . . . . . . . . . . . . . . I.2.7 Wave-Vector, Refractive Index and Impedance . . . . . . . . . . . . . . . . . . . . . .
Data Loading...