Geometric Theory of Semilinear Parabolic Equations

  • PDF / 17,091,613 Bytes
  • 353 Pages / 461 x 684 pts Page_size
  • 92 Downloads / 424 Views

DOWNLOAD

REPORT


840 Dan Henry

Geometric Theory of Semi linear Parabolic Equations

Springer-Verlag Berlin Heidelberg New York 1981

Author

Daniel Henry Universidade de Sao Paulo Instituto de Matematica e Estatistica Caixa Postal 20570 Agencia Iguatemi 05508 Sao Paulo (SP) Brazil

AMS Subject Classifications (1980): 35A30, 35 Bxx, 35 Kxx, 35010

ISBN 3-540-10557-3 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-10557-3 Springer-Verlag New York Heidelberg Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1981 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

TABLE OF CONTENTS Page INTRODUCTION . . . . . . .

1

CHAPTER 1:

3

1.1

1.2 1.3 1.4 1.5 CHAPTER 2: 2.1 2.2 2.3 2.4 2.5 2.6

2.7

CHAPTER 3: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 CHAPTER 4: 4.1 4.2 4.3 CHAPTER 5:

PRELIMINARIES. What is geometric theory? Basic facts and notation. .. Sectorial operators and analytic semigroups. Fractional powers of operators . . . . . . . Invariant subspaces and exponential bounds .

6.1 6.2 6.3 6.4

16 24

30

EXAMPLES OF NONLINEAR PARABOLIC EQUATIONS IN PHYSICAL, 41 BIOLOGICAL AND ENGINEERING PROBLEMS . . . . . Nonlinear heat equation. . . . . . . . . . . . Flow of electrons and holes in a semiconductor Hodgekin-Hux1ey equations for the nerve axon Chemical reactions in a catalyst pellet. Population genetics . Nuclear reactor dynamics . . . . . . . Navier-Stokes and related equations . . EXISTENCE, UNIQUENESS AND CONTINUOUS DEPENDENCE. Examples and counterexamples . . . . . . . . . . . The linear Cauchy problem. . . . . . . . . . . . . Local existence and uniqueness . Continuous and differentiable dependence of solutions. Smoothing action of the differential equation. Example: Ut = 6u + f(t,x,u,grad u) . Example: u t = 6u - Au 3(on IRn) . Example: the Navier-Stokes equation . DYNAMICAL SYSTEMS AND LIAPUNOV STABILITY

41 42 42 43 43 44 45 47 47 49

52 62 70 75 77

79 82

Dynamical systems and Liapunov functions Converse theorem on asymptotic stability Invariance principle . . . . . .

82 86

NEIGHBORHOOD OF AN EQUILIBRIUM POINT

98

5.1 Stability and instability by the linear approximation. 5.2 The saddle-point property . . . . . . . 5.3 The Chafee-Infante problem: u t = u + Af(u), and gradient flows . . . . . . . . . . . . . . . . . 5.4 Traveling waves of parabolic equations . . . . . . Appendix. Essential spectrum of some ordinary differential operators. . . . . . . . . . . . . . . . . . . . CHAPTER 6:

3 6

INVARIANT MANIFOLDS NEAR AN EQUILIBRIUM POINT. Existence and stability of an invariant manifold Critical cases of stability. . . . . . . . . . . . . Bifurcation and tr