Geometrical Methods in the Theory of Ordinary Differential Equations

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, ex

  • PDF / 928,095 Bytes
  • 13 Pages / 439.37 x 666.14 pts Page_size
  • 74 Downloads / 219 Views

DOWNLOAD

REPORT


Editors

M. Artin S.S. Chern J.L. Doob A. Grothendieck E. Heinz F. Hirzebruch L. Hormander S. Mac Lane W. Magnus C.C. Moore J.K. Moser M. Nagata W. Schmidt D.S. Scott J. Tits B.L. van der Waerden Managing Editors

M. Berger

B. Eckmann

S.R.S. Varadhan

Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics

A Selection 200. Doid: Lectures on Algebraic Topology 201. Beck: Continuous Flows in the Plane 202. Schmetterer: Introduction to Mathematical Statistics 203. Schoeneberg: Elliptic Modular Functions 204. Popov: Hyperstability of Control Systems 205. Nikol'skii: Approximation of Functions of Several Variables and Imbedding Theorems 206. Andre: Homologie des Algebres Commutatives 207. Donoghue: Monotone Matrix Functions and Analytic Continuation 208. Lacey: The Isometric Theory of Classical Banach Spaces 209. Ringel: Map Color Theorem 210. GihmanlSkorohod: The Theory of Stochastic Processes I 211. ComfortiNegrepontis: The Theory of Uitrafilters 212. Switzer: Algebraic Topology-Homotopy and Homology 213. Shafarevich: Basic Algebraic Geometry 214. van der Waerden: Group Theory and Quantum Mechanics 215. Schaefer: Banach Lattices and Positive Operators 216. P61yalSzego: Problems and Theorems in Analysis II 217. Stenstrom: Rings of Quotients 218. GihmanlSkorohod: The Theory of Stochastic Processes II 219. DuvantlLions: Inequalities in Mechanics and Physics 220. Kirikov: Elements of the Theory of Representations 221. Mumford: Algebraic Geometry I: Complex Projective Varieties 222. Lang: Introduction to Modular Forms 223. Bergh/Lofstrom: Interpolation Spaces. An Introduction 224. GilbargiTrudinger: Elliptic Partial Differential Equations of Second Order 225. Schiitte: Proof Theory 226. Karoubi: K-Theory. An Introduction 227. GrauertiRemmert: Theorie der Steinschen Riiume 228. Segal/Kunze: Integrals and Operators

229. Hasse: Number Theory 230. Klingenberg: Lectures on Closed Geodesics 231. Lang: Elliptic Curves: Diophantine Analysis 232. GihmanlSkorohod: The Theory of Stochastic Processes 01 233. StroocklVaradhan: Multidimensional Diffusion Processes 234. Aigner: Combinatorial Theory 235. DynkinlYushkevich: Controlled Markov Processes 236. GrauertiRemmert: Theory of Stein Spaces 237. Kothe: Topological Vector Spaces 0 238. Graham/McGehee: Essays in Commutative Harmonic Analysis 239. Elliott: Probabilistic Number Theory I 240. Elliott: Probabilistic Number Theory II 241. Rudin: Function Theory in the Unit Ball ofCR 242. HuppertiBlackburn: Finite Groups II 243. HuppertiBlackburn: Finite Groups III 244. KubertiLang: Modular Units 245. CornfeldiFominlSinai: Ergodic Theory 246. NaimarklStern: Theory of Group Representations 247. Suzuki: Group Theory I 248. Suzuki: Group Theory II 249. Chung: Lectures from Markov Processes to Brownian Motion 250. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations 251. Chow/Hale: Methods of Bifurcation Theory 252. Aubin: Nonlinear Analysis on Manifolds. Monge-Ampere Equations 253. Dwork: Lectures on p-adic Differential Equation