Grain boundary embrittlement in a beta titanium alloy
- PDF / 1,323,614 Bytes
- 3 Pages / 612 x 792 pts (letter) Page_size
- 26 Downloads / 292 Views
VOLUME6A, APRIL 1975-947
belief that the C and O concentration profiles are relat e d to s y s t e m c o n t a m i n a t i o n r a t h e r t h a n b e i n g a n i n h e r e n t c h a r a c t e r i s t i c of t h e s p e c i m e n u n d e r e x a m i n a l i o n . On t h i s b a s i s , o n l y t h e T i a n d C r e n r i c h m e n t a t t h e f r a c t u r e s u r f a c e c a n b e c o n s i d e r e d a s i n d i c a t i v e of the system presently under examination. A p r e v i o u s i n v e s t i g a t i o n b y t h e a u t h e r I2 h a s s h o w n that grain boundary segregation associated embrittlem e n t o c c u r r i n g d u r i n g s o l u t i o n t r e a t m e n t of m a r a g i n g steel may be virtually eliminated by either increasing the solution treatment temperature or increasing the
Fig. 1--Scanning Electron Micrograph of RMI 38644 solution treated at 927~ rain-air cooled. Initial impact velocity: 130 in. per s, I
I
f
I
I
I
I
INITIAL AUGER SPECTRA
Xl
-ff XI0
Cr Ti Ti
I
1
10gO 1600 EtFCTRON ENERGY, eV. Fig. 2 - - A u g e r Spectra of i n - s i t u f r a c t u r e d RMI 38644 solution
t r e a t e d at 927"C-30 r a i n - a i r cooled. 4
J
i
}
~
i
. e . . e . _ 9 1 4 9. e - e . 9. . .e . e'-e
i
i
i
i
. e _ e . . e --e--.e -- o - e - e - - . , . e.-e
i w.-e . .
i
.
i 9 9
e--e
i
i
V (472 eV)
/efe
3 Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr
2 """'-'"'"'""-'-'-"~'-'-""
1 o.
0
. . . . . . . . . . 9. . . . . . . .
Ti (418eV) -'"
Cr (.530eV)
. . . . ~ ........ -,., ................. MO (180eV) ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7C6 (272 eV)
I
i
I
i
I
I
I
I
DEP&I (h)
I
t
i
i
i
i
100
Fig. 3 - - I n e r t - i o n s p u t t e r i n g s e g r e g a t i o n profile of v a r i o u s e l e ments on RMI 38644 g r a i n b o u n d a r i e s (solution t r e a t m e n t 927"C-30 r a i n - a i r cooled). 948-VOLUME 6A, APRIL 1975
Fig. 4--Scanning E l e c t r o n M i c r o g r a p h s of RMI 38644 solution t r e a t e d at (a) 927"C, (b) 1060~ and (c) I390"C for t h r and w a t e r quenched. Initial impact velocity: 130 in. p e r s. METALLURGICAL TRANSACTIONS A
currecl following general yield after solution treatment at 927~ and water quenching, i.e., PF > PGY, the dynamic fracture toughness in this e a s e has been d e t e r mined utilizing the "equivalent energy" c r i t e r i a ) 3 Subsequent fractography, Fig. 4, confirms the fact that increasing the cooling rate from the solution treatment temperature r e s u l t s in dimple, ductile fracture and completely s u p p r e s s e s the intergranular f r a c ture morphology previously observed in the air cooled condition. However, increasing the solution treatment temperature leads to increasing amounts of quasicleavage and cleavage fracture. In s u m m a r y , m a x i m u m dynamic fracture toughness in solution treated RMI 38644 is observed with lower solution treatment temperatures and faster cooling r a t e s . The lower treatme
Data Loading...