Gravitational limit of particle volume fraction in liquid-phase sintering

  • PDF / 2,340,976 Bytes
  • 6 Pages / 597 x 774 pts Page_size
  • 86 Downloads / 230 Views

DOWNLOAD

REPORT


16. 17. 18.

19. 20. 21. 22. 23.

in lnterdiffusion in Alloys, K.P. Gurov, ed., Nauka, Moscow, 1973, translated from Russian, Amerind Publishing, New Delhi, India, 1986, pp. 332-37. E. Butchers and W. Hume-Rothery: J. Inst. Met., 1945, vol. 71, pp. 87-91. E.H. Dix, Jr., W.L. Fink, and L.A. Willey: Trans. AIME, 1933, vol. 104, pp. 335-52. I. Obitani, E. Hata, and K. Yamaji: J. Jpn. Inst. Met., 1953, vol. 17, pp. 496-501. H. Buckle: Z. Metallkd., 1946, vol. 37, pp. 43-47. R.P. Elliott: Constitution of Binary Alloys, First Supplement, McGraw-Hill Book Co., New York, NY, 1965, pp. 58-61. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys-2, Int. Ser. Monographs in Met. Phys. Phys. Metall., Pergamon Press, Oxford, United Kingdom, 1967, pp. 574-99. L.D. Villars and L.D. Calvert: Pearson's Handbook of Crystallographic Data for lntermetallic Phases, ASM, Metals Park, OH, 1986, pp. 1019-76. H.W. King: J. Mater. Sci., 1966, vol. 1, pp. 79-90. T. Yamane, Y. Minamino, T. Sato, E. Itaya, Y. Miyamoto, and M. Koizumi: DIMETA-88, Diffusion in Metals and Alloys, Proc. Int. Conf., F.J. Kedves and D.L. Beke, eds., Sci-Tech Publications, Brookfield, VT, 1989, pp. 1269-73. Y. Minamino, T. Yamane, S. Ueno, M. Koizumi, N. Ogawa, and M. Shimada: J. Jpn. Inst. Met., 1984, vol. 48, pp. 478-81. Y. Minamino, T. Yamane, H. Araki, T. Adachi, Y.S. Kang, Y. Miyamoto, and T. Okamoto: Osaka University, Osaka, Japan, unpublished research, 1990. S.M. Banova, I.A. Koruskaya, G.M. Kuznetsov, and V.A. Sergeyev: Phys. Met. Metall., 1979, vol. 46, pp. 58-63. Y. Minamino, T. Yamane, T. Sato, Y. Miayamoto, and H. Araki: J. Jpn. Inst. Light Met., 1988, vol. 38, pp. 800-06. H. Mii, M. Senoo, and I. Fujishiro: Jpn. J. AppL Phys., 1976, vol. 15, pp. 777-83.

Gravitational Limit of Particle Volume Fraction in Liquid-Phase Sintering SUNG-CHUL YANG and R.M. GERMAN In liquid-phase sintering, there are certain volume fractions of solid that cannot be fabricated under normal gravitational conditions without separation of solid and liquid. Such inhomogeneities are avoided by focusing on high solid volume fractions where capillary forces retard solid-liquid separation. It is desirable to predict the possible liquid-phase sintering compositions that can be processed on earth as a part of our interest in performing critical space-based microgravity experiments. In order to do this, a knowledge about the spacial arrangement of grains and the forces responsible for this arrangement is required. The forces acting in liquid-phase sintering are surface tensions that geometrically balance each other at the lines and along the surfaces where they meet. Consider solid particles dropped into a less dense liquid, as shown in Figure 1. They will form a sphere in order to maintain the smallest possible interfacial area if gravity and viscosity can be ignored. When these par-

SUNG-CHUL YANG, Postdoctoral Researcher, and R.M. GERMAN, Robert W. Hunt Professor, are with the Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180-